Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Bất đẳng thức nào sau đây là đúng? A 3−e > 2−e B ( √ 3 + 1) π > ( √ 3 +[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Bất đẳng thức sau đúng? −e A 3√ > 2−e √ e π C ( − 1) < ( − 1) Câu Tính I = R1 √3 √ √ π e B ( + 1) > ( + 1) D 3π < 2π 7x + 1dx 21 45 20 60 B I = C I = D I = 28 28 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≥ C m < D m ≤ A I = Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 30a3 B 60a3 C 100a3 D 20a3 Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ D m ≥ A m ∈ (−1; 2) B m ∈ (0; 2) C −1 < m < √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hoành Tìm thể tích V khối trịn xoay tạo thành? π 10π A V = π B V = C V = D V = 3 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 C y = x2 − 2x + D y = x3 − 2x2 + 3x + Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A 4πR3 B πR3 C πR3 4 D πR3 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π A V = B V = C V = D V = 5 R5 dx Câu 10 Biết = ln T Giá trị T là: 2x − √ A T = B T = C T = 81 D T = R Câu 11 Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B −3 sin 3x + C C sin 3x + C D sin 3x + C 3 Câu 12 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 2π C 4π D π Trang 1/5 Mã đề 001 Câu 13 Cho a > a , Giá trị alog A B √ a bằng? C D √ Câu 14 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có√diện tích lớn bằng? √ √ 3 3 2 A (m ) B 3(m ) C (m ) D (m ) Câu 15 Đạo hàm hàm số y = log √2 3x − là: 6 A y′ = C y′ = B y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln R Câu 16 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(x) − + C − 2i (1 − i)(2 + i) Câu 17 Phần thực số phức z = + 2−i + 3i 29 11 29 A B C − 13 13 13 Câu 18 Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B Khơng có số C Chỉ có số D Câu 19 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B −3 − 10i C 11 + 2i D −3 − 2i D − 11 13 Câu 20 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D 2017 + 2i + i Câu 21 Số phức z = có tổng phần thực phần ảo 2−i A B C -1 D √ Câu 22 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B m ≥ m ≤ −1 C ≤ m ≤ D −1 ≤ m ≤ Câu 23 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A N(2; 3) B Q(−2; −3) C P(−2; 3) D M(2; −3) !2016 !2018 1+i 1−i Câu 24 Số phức z = + 1−i 1+i A B C + i D −2 Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B −22016 C −21008 + D 21008 Câu 26 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ h √ √ √ 2π − π− 3 2π − 3 A B C D 12 12 Trang 2/5 Mã đề 001 Câu 27 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 33,2 B 11 C 8,9 D 2,075 y−6 z−1 x−3 = = Câu 28 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 A = = B = = −3 −1 x y−1 z−1 x−1 y z−1 C = = D = = −1 −3 −1 −3 √ x− x+2 Câu 29 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D Câu 30 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa3 3 B πa C D 3πa3 A πa 3 Câu 31 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 4π B 8π C 2π D 3π Câu 32 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D √ Câu 33 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ 3 √ a3 3 a 2a A B a3 D C 3 Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ C D √ A B 2 Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 4)2 C P = (|z| − 2)2 D P = |z|2 − Câu 36 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | √ Câu 37 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a + b + c B a2 + b2 + c2 + ab + bc + ca C D a2 + b2 + c2 − ab − bc − ca Câu 38 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 Trang 3/5 Mã đề 001 Câu 39 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm S B điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z D điểm P √ Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm N C điểm R bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm M Câu 41 Cho số phức z thỏa mãn |z − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 + z + z2 Câu 42 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 5 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 2 Câu 43 Hình phẳng giới hạn đồ thị hàm y = x +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 2 Câu 44 Cho biểu thức P = (ln a + loga e) + ln a − (loga e) , với < a , Chọn mệnh đề A P = 2loga e B P = C P = ln a D P = + 2(ln a)2 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 45 Trong khơng gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ → − → − → − → C u + v = (1; 13; 16) D u + 3−v = (2; 14; 14) Câu 46 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 12a3 C 4a3 D 6a3 x2 Câu 47 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 64 32 128 Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080254 đồng C 36080255 đồng D 36080251 đồng Câu 49 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 3mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Câu 50 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 12π C 6π D 10π Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001