Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cá[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a 3a 5a a A √ B C √ D 5 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; −2) C (−2; 1; 2) D (2; −1; 2) p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếux = y = −3 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 360 C 600 D 450 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → → − → − −u | = −u | = √3 A | u | = B | u | = C |→ D |→ x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 A y = −1 B y = C y = D y = − R R R R 2 Câu Đồ thị hàm số sau có vô số đường tiệm cận đứng? 3x + A y = B y = sin x x−1 C y = x3 − 2x2 + 3x + D y = tan x Câu Bất đẳng thức sau đúng? −e A 3√ > 2−e √ e π C ( − 1) < ( − 1) π B 3√ < 2π √ π e D ( + 1) > ( + 1) Câu Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab2 ) = ln a + ln b B ln( ) = b ln b C ln(ab2 ) = ln a + (ln b)2 D ln(ab) = ln a ln b Câu 10 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [22; +∞) B ( ; 2] [22; +∞) C ( ; +∞) D [ ; 2] [22; +∞) 4 Câu 11 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A Không tồn m B < m < C m < D m < 3 Câu 12 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh 2a Tính thể√tích khối nón √ huyền π 2.a 4π 2.a3 2π.a3 π.a3 A B C D 3 3 Trang 1/5 Mã đề 001 Câu 13 Gọi S (t) diện tích hình phẳng giới hạn đường y = t(t > 0) Tìm lim S (t) t→+∞ A ln − B − ln − ; y = 0; x = 0; x = (x + 1)(x + 2)2 C ln + √ sin 2x trên√R bằng? Câu 14 Giá trị lớn hàm số y = ( π) A π B C π D − ln 2 D Câu 15 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại cao chiều cao tứ diện √ tiếp tam giác BCD và√có chiều √ √ 2π 2.a2 π 2.a2 π 3.a2 A B C π 3.a D 3 Câu 16 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số nghịch biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (1; +∞) D Hàm số đồng biến khoảng (−3; 1) 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 17 Cho số phức z thỏa mãn (2 + i)z + 1+i A B 13 C D Câu 18 Cho hai √ số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = A |z1 + z2 | = Câu 19 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = −21009 C (1 + i)2018 = 21009 i D (1 + i)2018 = −21009 i Câu 20 2i, z2 = − i Giá trị biểu √ thức |z1 + z1 z2 | √ √ Cho số phức z1 = + √ B 30 C 10 D 130 A 10 Câu 21 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −7 C D −3 Câu 22 Với số phức z, ta có |z + 1|2 A z · z + z + z + B z2 + 2z + C |z|2 + 2|z| + D z + z + √ Câu 23 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B m ≥ m ≤ C −1 ≤ m ≤ D m ≥ m ≤ −1 (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 24 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A z = B z số ảo C z = z D |z| = z Câu 25 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 26 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 24 12 2 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x + y + z − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi √ là: A 3π B 2π C 4π D 8π Trang 2/5 Mã đề 001 Câu 28 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (−1; 1; 1) B (1; 1; 3) C (1; −1; 1) D (1; −2; −3) √ Câu 29 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a 10 a a B a D A C Câu 30 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 1 Câu 31 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) 4k(k + 1) k(k + 1) A M = B M = C M = D M = 2loga x 3loga x loga x loga x (2 ln x + 3)3 Câu 32 Họ nguyên hàm hàm số f (x) = : x (2 ln x + 3)2 (2 ln x + 3)4 ln x + A + C B + C C + C 2 D (2 ln x + 3)4 + C Câu 33 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 48.621.980 đồng B 45.188.656 đồng C 43.091.358 đồng D 46.538667 đồng Câu 34 Cho số phức z , thỏa mãn A |z| = 1 B |z| = z+1 số ảo Tìm |z| ? z−1 C |z| = D |z| = Câu 35 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = −2016 C P = 2016 D P = Câu 36 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ C D A B 13 Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ thức P = |z1 | + |z √2 | √ √ A P = 34 + B P = C P = 26 D P = + √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm Q Câu 39 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P B điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm R D điểm S Trang 3/5 Mã đề 001 Câu 40 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = C A = + i D A = −1 Câu 41 (Sở Nam Định) Tìm mô-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 42 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B |z| = C z số ảo D Phần thực z số âm Câu 43 Chọn mệnh đề mệnh đề sau: R R e2x (2x + 1)3 A e2x dx = +C B (2x + 1)2 dx = + C R R C x dx =5 x + C D sin xdx = cos x + C r 3x + Câu 44 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) B D = (−∞; 0) C D = (−∞; −1] ∪ (1; +∞) D D = (1; +∞) Câu 45 Biết π R2 sin 2xdx = ea Khi giá trị a là: A ln B C − ln D Câu 46 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (−1; 1) C (1; 5) D (3; 5) Câu 47 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 |x2 − 2x|dx = (x2 − 2x)dx − R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − (x2 − 2x)dx (x2 − 2x)dx |x2 − 2x|dx Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 11 17 21 10 31 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 49 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > m < − C m > m < −1 D m > Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B −2 C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001