Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x ≥ 0; y ≤ 18x3 + 4x = (3 − y[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < π y > − 4π2 C Nếu < x < y < −3 D Nếux = y = −3 Câu Số nghiệm phương trình x + 5.3 x − = A B C D ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ab < B ad > C ac < D bc > Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số đồng biến R C Hàm số nghịch biến (0; +∞) D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu R5 Công thức sai? A R cos x = sin x + C C e x = e x + C R B R a x = a x ln a + C D sin x = − cos x + C π π π x F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = − C F( ) = + D F( ) = + 4 4 4 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = tan x B y = x−1 C y = x − 2x + 3x + D y = sin x Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 2; 0) C (−2; 0; 0) D (0; 6; 0) Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 B Không tồn m C m < D < m < A m < 3 Câu 10 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ C m > D m ≥ −1 Câu 11 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A −2 < m < B −2 ≤ m ≤ C m = D < m < Câu 12 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π A V = B V = C V = D V = 3 5 Câu 13 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số đồng biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (−∞; −3) C Hàm số nghịch biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (1; +∞) Trang 1/5 Mã đề 001 √ Câu 14 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận B Có tiệm cận ngang khơng có tiệm cận đứng C Khơng có tiệm cận ngang có tiệm cận đứng D Có tiệm cận ngang tiệm cận đứng √ Câu 15 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C a D 2 Câu 16 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 2; 0) B A(0; 0; 3) C A(0; 2; 3) D A(1; 0; 3) √ Câu 17 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A −1 ≤ m ≤ B m ≥ m ≤ C m ≥ m ≤ −1 D ≤ m ≤ Câu 18 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức w = 6z − 25i B C D 13 A 29 Câu 19 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số phức B Mô-đun số phức z số thực D Mô-đun số phức z số thực dương Câu 20 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 i B (1 + i)2018 = −21009 i C (1 + i)2018 = −21009 D (1 + i)2018 = 21009 + 2i + i2017 có tổng phần thực phần ảo 2−i B -1 C D z Câu 22 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z √ √ B 13 C D A 11 Câu 21 Số phức z = A Câu 23 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −9 C 10 D −10 !2016 !2018 1+i 1−i Câu 24 Số phức z = + 1−i 1+i A + i B −2 C D Câu 25 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −7 C −3 D Câu 26 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga = a loga a = B loga x có nghĩa với ∀x ∈ R C loga (xy) = loga x.loga y D loga xn = log x , (x > 0, n , 0) an Câu 27 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình A (x + 1)2 + (y − 1)2 + (z − 2)2 = B (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 √ C (x + 1)2 + (y − 1)2 + (z − 2)2 = D (x − 1)2 + (y + 1)2 + (z + 2)2 = Câu 28 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 Trang 2/5 Mã đề 001 Câu 29 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 8,9 B 2,075 C 33,2 D 11 Câu 30 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 43.091.358 đồng B 48.621.980 đồng C 45.188.656 đồng D 46.538667 đồng Câu 31 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 20 5πa3 5 5 5π a B V = C V = πa D V = πa3 A V = 6 x Câu 32 Họ nguyên hàm hàm số y = (x − 1)e là: A xe x + C B xe x−1 + C C (x − 1)e x + C D (x − 2)e x + C Câu 33 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−∞; −4) ∪ (−1; +∞) B S = (−4; −1) C S = (−1; +∞) D S = [−1; +∞) Câu 34 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = B P = −2016 C P = 2016 D max T = √ Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 √ √ √ 42 √ Câu 36 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z B < |z| < C < |z| < D < |z| < A < |z| < 2 √ Câu 37 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 A |z| > B |z| < C < |z| < D ≤ |z| ≤ 2 2 2 Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ C A B D √ 2 Câu 39 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B 15 C D + z + z2 Câu 40 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 41 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C D 13 Trang 3/5 Mã đề 001 Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 Câu 43 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 2mn + n + A log2 2250 = B log2 2250 = m n 3mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Câu 44 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 2 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = √ Câu 46 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình có nghiệm thuộc khoảng (−∞; 1) B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình với x ∈ (4; +∞) D Bất phương trình vơ nghiệm Câu 47 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 49 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 4a3 B 3a3 C 12a3 D 6a3 Câu 50 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B C D R3 R3 R3 1 R2 |x2 − 2x|dx = (x2 − 2x)dx + R2 |x2 − 2x|dx = |x2 − 2x|dx − |x − 2x|dx = − 2 R3 R3 (x2 − 2x)dx |x2 − 2x|dx R2 (x − 2x)dx + R3 (x2 − 2x)dx Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001