Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cá[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 5a 3a 2a a D A √ B √ C 5 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m < C m ≥ D m > Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 29 C R = 21 D R = Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = −2 C m = D m = −15 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (2; −1; 2) C (−2; −1; 2) D (−2; 1; 2) √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hoành Tìm thể tích V khối trịn xoay tạo thành? π 10π C V = D V = π A V = B V = 3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 0; 5) C (0; 5; 0) D (0; 1; 0) Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu 10 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − m2 − 12 m2 − 12 4m2 − A B C D 2m 2m m 2m √ d = 1200 Gọi Câu 11 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a 15 a a A a 15 B C D Câu 12 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ −1 C m ≥ D m > Câu 13 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 Trang 1/5 Mã đề 001 A V1 = V2 B V1 = V2 C V1 = V2 √ sin 2x π) R bằng? Câu 14 Giá trị lớn hàm số y = ( √ A π B π C D V1 = V2 D Câu 15 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD có chiều cao chiều cao tứ diện √ √ √ tiếp 2 √ π 3.a 2π 2.a π 2.a2 A B π 3.a C D 3 Câu 16 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(−3; 1; 1) B C(1; 5; 3) C C(5; 9; 5) D C(3; 7; 4) !2016 !2018 1−i 1+i + Câu 17 Số phức z = 1−i 1+i A B C + i D −2 Câu 18 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun √ số phức z1 + z2 C |z1 + z2 | = D |z1 + z2 | = A |z1 + z2 | = B |z1 + z2 | = 13 Câu 19 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B M(2; −3) C N(2; 3) D P(−2; 3) 25 1 Câu 20 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −31 B −17 C 17 D 31 Câu 21 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −9 C 10 D −10 2017 + 2i + i có tổng phần thực phần ảo Câu 22 Số phức z = 2−i A B -1 C D Câu 23 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = C P = D P = 2i Câu 24 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B |z2 | = |z|2 C z − z = 2a D z + z = 2bi Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −22016 B −21008 C 21008 D −21008 + Câu 26 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 46.538667 đồng B 43.091.358 đồng C 45.188.656 đồng D 48.621.980 đồng Câu 27 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình A (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 B (x − 1)2 + (y + 1)2 + (z + 2)2 = √ C (x + 1)2 + (y − 1)2 + (z − 2)2 = D (x + 1)2 + (y − 1)2 + (z − 2)2 = Câu 28 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 33,2 B 11 C 2,075 D 8,9 Câu 29 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa A πa3 B 3πa3 C D πa3 3 Trang 2/5 Mã đề 001 Câu 30 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung quanh diện tích mặt √ đáy nhỏ nhất, S 2 D 106, 25dm2 A 75dm B 125dm C 50 5dm2 Câu 31 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 24π(dm3 ) B 6π(dm3 ) C 54π(dm3 ) D 12π(dm3 ) 1 + + + ta được: Câu 32 Rút gọn biểu thức M = loga x loga2 x logak x k(k + 1) k(k + 1) k(k + 1) 4k(k + 1) A M = B M = C M = D M = loga x 2loga x 3loga x loga x Câu 33 Cho R4 f (x)dx = 10 −1 A R4 B f (x)dx = Tính R1 f (x)dx −1 C −2 D 18 = Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ C D B A √ 2 Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 D P = |z|2 − A P = (|z| − 2)2 B P = (|z| − 4)2 C P = |z|2 − Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = B P = 34 + C P = 26 D P = + z+1 số ảo Tìm |z| ? Câu 37 Cho số phức z , thỏa mãn z−1 A |z| = B |z| = C |z| = D |z| = √ 2 Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 z Câu 39 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C 2 D z Câu 40 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? 1√+ |z|2 1 A B C D √ √ √ 42 √ Câu 41 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z Trang 3/5 Mã đề 001 A < |z| < B < |z| < C < |z| < 2 D < |z| < Câu 42 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| √ A max T = B P = −2016 C P = D P = 2016 Câu 43 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = ln a C P = + 2(ln a)2 D P = 2loga e Câu 44 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 32π B 31π C 33π D 6π Câu 45 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2a+b+c C P = 2a+2b+3c D P = 2abc Câu 46 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 47 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ D R = 14 A R = B R = C R = 15 Câu 48 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 Câu 49 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x > y C Nếu a > a x > ay ⇔ x < y D Nếu a < a x > ay ⇔ x < y −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 50 Trong khơng gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001