Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = x x2 + 1 trên tập xác định của nó là A m[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 C y = − D y = A y = −1 B y = R R R R 2 Câu Đồ thị hàm số sau có vô số đường tiệm cận đứng? 3x + B y = tan x A y = x−1 C y = sin x D y = x3 − 2x2 + 3x + Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 30a3 C 60a3 D 100a3 Câu Số nghiệm phương trình x + 5.3 x − = A B C Câu Hàm số sau khơng có cực trị? A y = x2 C y = x3 − 6x2 + 12x − D B y = x4 + 3x2 + D y = cos x Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > 2e B m > C m ≥ e−2 D m > e2 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 Câu Kết đúng? R R sin3 x + C A sin2 x cos x = cos2 x sin x + C B sin2 x cos x = R R sin3 x C sin2 x cos x = −cos2 x sin x + C D sin2 x cos x = − + C Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu 10 Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + ln b B ln(ab) = ln a ln b a ln a C ln(ab2 ) = ln a + (ln b)2 D ln( ) = b ln b Câu 11 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 A (m2 ) B (m2 ) C 3(m2 ) D (m ) √ Câu 12 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang tiệm cận đứng B Có tiệm cận ngang khơng có tiệm cận đứng Trang 1/5 Mã đề 001 C Không có tiệm cận ngang có tiệm cận đứng D Khơng có tiệm cận Câu 13 Cho a > a , Giá trị alog A B √ a bằng? C D √ Câu 14 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu 15 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A ( ; 2] [22; +∞) B ( ; +∞) C [22; +∞) D [ ; 2] [22; +∞) 4 Câu 16 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ A ln − B − ln 2 C − ln − Câu 17 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D ln + D Câu 18 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A N(2; 3) B Q(−2; −3) C M(2; −3) D P(−2; 3) Câu 19 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = D P = 2i (1 + i)(2 − i) Câu 20 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = Câu 21 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức w = 6z − 25i A 29 B C D 13 2(1 + 2i) Câu 22 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D Câu 23 Cho số phức z = + 5i Tìm số phức w = iz + z A w = + 7i B w = −7 − 7i C w = −3 − 3i D w = − 3i Câu 24 Tìm số phức liên hợp số phức z = i(3i + 1) A z = + i B z = − i C z = −3 + i D z = −3 − i Câu 25 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i =√1 34 34 A |z| = 34 B |z| = C |z| = 3 D |z| = √ 34 Câu 26 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5 5π 20 5πa3 5 A V = πa B V = a C V = D V = πa 6 Trang 2/5 Mã đề 001 Câu 27 Tìm tất giá trị tham số m để đồ thị hàm số y = hai điểm cực trị nằm phía bên phải trục tung? A m < B m > x − (m − 2)x2 + (m − 2)x + m2 có 3 C m > m < D m > Câu 28 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 Câu 29 Cho hàm số y = x −3x Tính y′ A y′ = (2x − 3)5 x −3x ln C y′ = (x2 − 3x)5 x −3x ln B y′ = x −3x ln D y′ = (2x − 3)5 x −3x 3x − Câu 30 Tập nghiệm bất phương trình log4 (3 x − 1).log ≤ là: 16 4 A S = (0; 1] ∪ [2; +∞) B S = (−∞; 1] ∪ [2; +∞) C S = [1; 2] D S = (1; 2) 1 Câu 31 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x k(k + 1) 4k(k + 1) k(k + 1) k(k + 1) B M = C M = D M = A M = loga x 2loga x loga x 3loga x Câu 32 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 − 4x B 2x3 − 4x4 C x3 + − 4x + D x3 − x4 + 2x A x3 + 4 Câu 33 Đồ thị hình bên đồ thị hàm số nào? 2x + −2x + 2x − 2x + A y = B y = C y = D y = x+1 1−x x−1 x+1 Câu 34 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 √ 2 Mệnh đề Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2 C |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ √ √ 42 √ Câu 36 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 37 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B |z| = C z số ảo D Phần thực z số âm Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Câu 39 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = −2016 B P = 2016 C P = D P = Trang 3/5 Mã đề 001 Câu 40 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| A B z số thực Giá trị lớn + z2 √ C 2 D √ = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 1 9 B 0; C ; D ; A ; +∞ 4 4 Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − √ Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | + 2|z2 + z3 | + 3|z3 + z1 | bao nhiêu? √ √ √ 10 A Pmax = B Pmax = C Pmax = Giá trị lớn biểu thức D Pmax √ = Câu 43 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B m < C m > −2 D −3 ≤ m ≤ x2 + mx + đạt cực tiểu điểm x = x+1 C Không có m D m = Câu 44 Tìm tất giá trị tham số m để hàm số y = A m = −1 B m = Câu 45 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ B 9a3 C 4a3 D 6a3 A 3a3 Câu 46 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −2 D −4 Câu 47 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −2x4 + 4x2 B y = −x4 + 2x2 + C y = −x4 + 2x2 D y = x3 − 3x2 d Câu 48 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C a D 2a √ Câu 49 Tính đạo hàm hàm số y = log4 x2 − x x ′ ′ A y′ = B y = C y = √ 2(x2 − 1) ln (x2 − 1)log4 e x2 − ln D y′ = x (x2 − 1) ln Câu 50 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001