Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có đáy bằng a, AA′ = 4 √ 3a Thể tích khối lă[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ ′ Câu Cho lăng trụ ABC.A√′ B′C ′ có đáy a, AA = 3a Thể tích khối lăng trụ cho là: √ 3 A 3a B 3a C 3a3 D a3 Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + 2m + m+2 m+1 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 2m + m+2 m+1 Câu √Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh 2 A 2π l − R B 2πRl C π l2 − R2 D πRl Câu Cho hình S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: √ chóp 3a b 3ab2 A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 a2 3b2 − a2 D VS ABC = C VS ABC = 12 12 Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B m ∈ (0; 2) C m ∈ (−1; 2) D −1 < m < Câu Hàm số sau khơng có cực trị? A y = cos x C y = x4 + 3x2 + B y = x2 D y = x3 − 6x2 + 12x − Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường elip C Đường parabol D Đường tròn Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga2 x = loga x B loga x2 = 2loga x C aloga x = x D loga (x − 2)2 = 2loga (x − 2) √ x Câu Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = D x = Câu 10 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A m < B < m < C m < D Không tồn m 3 √ Câu 11 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a B A a C D 2 Câu 12 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều√cao tứ diện √ tiếp √ π 3.a2 π 2.a2 2π 2.a A B C D π 3.a2 3 Trang 1/5 Mã đề 001 √ Câu 13 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Có tiệm cận ngang khơng có tiệm cận đứng C Có tiệm cận ngang tiệm cận đứng D Khơng có tiệm cận Câu 14 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh√huyền 2a Tính thể √ tích khối nón π 2.a3 π.a3 2π.a3 4π 2.a3 A B C D 3 3 Câu 15 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 16 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B ( ; 2] [22; +∞) C [22; +∞) D [ ; 2] [22; +∞) A ( ; +∞) 4 Câu 17 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 20 (m) B S = 24 (m) C S = 28 (m) D S = 12 (m) ax + b Câu 18 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ab < B ac < C ad > D bc > Câu 19 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = C m = −15 D m = 13 Câu 20 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; ln3) C S = [ 0; +∞) D S = (−∞; 2) Câu 21 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = − ln ln 5 ln ln x x C y = +1− D y = + ln ln 5 ln Câu 22 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (0; 6; 0) C (−2; 0; 0) D (0; −2; 0) Câu 23 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = x3 − 2x2 + 3x + x−1 C y = sin x D y = tan x Câu 24 Cho a > 1; < x < y Bất đẳng thức sau đúng? A ln x > ln y B loga x > loga y C log x > log y a Câu 25 Hàm số sau khơng có cực trị? A y = cos x C y = x4 + 3x2 + D log x > log y a B y = x2 D y = x3 − 6x2 + 12x − Trang 2/5 Mã đề 001 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ B C D A Câu 27 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 48.621.980 đồng B 43.091.358 đồng C 45.188.656 đồng D 46.538667 đồng Câu 28 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 54π(dm3 ) B 12π(dm3 ) C 6π(dm3 ) D 24π(dm3 ) (2 ln x + 3)3 : Câu 29 Họ nguyên hàm hàm số f (x) = x (2 ln x + 3) (2 ln x + 3) ln x + (2 ln x + 3)4 A + C B + C C + C D + C 2 8 Câu 30 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 12 24 Câu 31 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5π 20 5πa3 5 πa B V = a C V = D V = πa3 A V = 6 2 Câu 32 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x + y + z − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi là: √ A 2π B 3π C 8π D 4π Câu 33 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = [−1; +∞) B S = (−4; −1) C S = (−1; +∞) D S = (−∞; −4) ∪ (−1; +∞) Câu 34 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRl + 2πR2 C S = πRl + πR2 D S = πRh + πR2 Câu 35 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 33π 32π B C D 6π A 5 Câu 36 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa 17 πa2 15 A B C D Câu 37 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = 0.√ A R = 14 B R = 15 C R = D R = Câu 38 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = C m = m = −16 D m = Trang 3/5 Mã đề 001 Câu 39 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = + 2t x = − 2t x = + 2t x = −1 + 2t y = −2 − 3t y = −2 + 3t y = −2 + 3t y = + 3t A B C D z = − 5t z = + 5t z = − 5t z = −4 − 5t √ Câu 40 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình với x ∈ (4; +∞) C Bất phương trình vơ nghiệm D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) x2 Câu 41 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 32 128 64 Câu 42 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 400π 125π 250π 500π A B C D 9 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C 2x + y − 4z + = D −2x − y + 4z − = Câu 44 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √diện tích tam giác S BC3 √ √ chóp S ABC √ với mặt phẳng (ABC), 3 a 15 a 15 a a 15 B C D A 16 Câu 45 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = + 2(ln a)2 B P = C P = 2loga e D P = ln a 3x Câu 46 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = −2 B m = C Không tồn m D m = Câu 47 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ πa2 17 πa2 15 πa2 17 πa2 17 A B C D Câu 48 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 3mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C −4 D Câu 50 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, Trang 4/5 Mã đề 001 A 36080251 đồng C 36080254 đồng B 36080253 đồng D 36080255 đồng - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001