Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) 2x − y + 2z + 5 =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; 1; 0) C (0; −5; 0) D (0; 5; 0) Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; 2) C S = (−∞; ln3) D S = [ -ln3; +∞) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 2; 0) C (0; 6; 0) D (−2; 0; 0) π x π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = + C F( ) = − D F( ) = − 4 4 4 Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga x2 = 2loga x B aloga x = x C loga (x − 2)2 = 2loga (x − 2) D loga2 x = loga x → − Câu Trong không gian với hệ tọa√độ Oxyz cho u (2; −2; 1), kết luận sau đúng? −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? A R = 29 B R = 21 C R = D R = Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 Câu 10 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại √ tiếp tam giác BCD có chiều cao chiều√cao 2của tứ diện √ √ 2π 2.a2 π 3.a π 2.a2 A B π 3.a C D 3 √ Câu 11 Đạo hàm hàm số y = log 3x − là: 2 6 B y′ = C y′ = D y′ = A y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 12 Cho hàm số y = 2x + 2017 (1) Mệnh đề đúng? x + Trang 1/5 Mã đề 001 A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng C Đồ thị hàm số (1) tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng Câu 13 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 3π C 4π D 2π Câu 14 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B ( ; 2] [22; +∞) C [22; +∞) D ( ; +∞) A [ ; 2] [22; +∞) 4 √ Câu 15 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; 1) B ( ; +∞) C (1; +∞) D (0; ) 4 R Câu 16 Tính nguyên hàm cos 3xdx 1 C −3 sin 3x + C D sin 3x + C A sin 3x + C B − sin 3x + C 3 Câu 17 Bất đẳng thức sau đúng? π A 3√ < 2π √ π e C ( + 1) > ( + 1) −e B 3√ > 2−e √ e π D ( − 1) < ( − 1) Câu 18 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≤ C m < D m ≥ Câu 19 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = tan x B y = x3 − 2x2 + 3x + 3x + C y = sin x D y = x−1 Câu 20 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A 3π B C 3π D √ 3 Câu 21 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m ≥ e−2 B m > C m > e2 D m > 2e √ ′ Câu 22 Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA = 3a Thể tích khối trụ cho là: √ √ lăng 3 3 A 3a B a C 3a D 3a Câu 23 Hàm số sau khơng có cực trị? A y = x2 C y = x3 − 6x2 + 12x − B y = cos x D y = x4 + 3x2 + Câu 24 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Trang 2/5 Mã đề 001 Câu 25 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A −1 < m < B m ≥ C m ∈ (−1; 2) D m ∈ (0; 2) Câu 26 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 27 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 28 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R (mặt nước thấp nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ h √ √ √ π− 2π − 3 2π − 3 A B C D 12 12 x2 + 2x Câu 29 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A −2 B 15 C D Câu 30 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 Câu 31 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình √ vng √ 3a 10 C 6a D 3a A 3a B Câu 32 Đồ thị hàm số sau có điểm cực trị: A y = −x4 − 2x2 − B y = 2x4 + 4x2 + C y = x4 − 2x2 − (2 ln x + 3)3 : x (2 ln x + 3)4 (2 ln x + 3)2 B + C C + C 2 D y = x4 + 2x2 − Câu 33 Họ nguyên hàm hàm số f (x) = A ln x + + C D (2 ln x + 3)4 + C Câu 34 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 15 πa 17 πa 17 πa2 17 A B C D 4 √ Câu 35 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ [ 1; 3] Câu 36 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x > y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x < y Trang 3/5 Mã đề 001 Câu 37 Hàm số hàm số sau đồng biến R 4x + A y = x4 + 3x2 B y = x+2 C y = −x3 − x2 − 5x D y = x3 + 3x2 + 6x − Câu 38 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 9a C 4a D 3a3 A 6a √ 2x − x2 + Câu 39 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 40 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 41 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 8π C 12π D 10π Câu 42 Hàm số hàm số sau có đồ thị hình vẽ bên D y = −2x4 + 4x2 A y = −x4 + 2x2 + B y = −x4 + 2x2 C y = x3 − 3x2 Câu 43 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cách hai đường thẳng √ √ cạnh AB, AD Tính khoảng √ 3a 3a 30 3a a 15 B C D A 2 10 Câu 44 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 15 πa 17 πa2 17 A B C D Câu 45 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; ′ AA′ =√2a Gọi α số đo góc √ hai đường thẳng AC DB Tính giá trị cos α.√ A B C D Câu 46 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = + 2t x = + 2t x = −1 + 2t x = − 2t y = −2 + 3t y = −2 + 3t y = −2 − 3t y = + 3t A B C D z = − 5t z = −4 − 5t z = + 5t z = − 5t Câu 48 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 2mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c Trang 4/5 Mã đề 001 A B C D Câu 50 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π B 6π C D A 5 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001