Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 6 trang) Mã đề 001 Câu 1 Cho hàm số y = ax + b cx + d có đồ thị như hình vẽ bên Kết luận nào sau[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu Cho hàm số y = cx + d A ad > B ab < C bc > D ac < Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x2 − 2x + C y = x3 D y = x3 − 2x2 + 3x + Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A B √ C 3π D 3π 3 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 2πR3 C 4πR3 D πR3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(20; 15; 7) C C(6; −17; 21) D C(6; 21; 21) A C(8; ; 19) √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H3) C (H1) D (H4) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (2; 3; 1) C M ′ (2; −3; −1) D M ′ (−2; 3; 1) −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → → − → − −u | = −u | = √3 A | u | = B | u | = C |→ D |→ Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(−3; 1; 1) B C(3; 7; 4) C C(1; 5; 3) D C(5; 9; 5) Câu 10 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A π B C D −1 Câu 11 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A B C D − 6 2x + 2017 Câu 12 Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng B Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 C Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = Trang 1/6 Mã đề 001 D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng Câu 13 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A 3 Câu 14 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x +x2 y = x2 +3x+mcắt nhiều điểm A −2 < m < B −2 ≤ m ≤ C m = D < m < Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu 16 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A x π π π Câu 17 Biết F(x) nguyên hàm hàm số f (x) = F( ) = Tìm F( ) √ cos2 x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = + C F( ) = − D F( ) = − 4 4 4 p Câu 18 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếux > thìy < −15 C Nếu < x < y < −3 D Nếu < x < π y > − 4π2 Câu 19 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = sin x 3x + C y = D y = tan x x−1 Câu 20 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 450 B 360 C 600 D 300 x Câu 21 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = C y = − D y = −1 R R R R 2 m R dx Câu 22 Cho số thực dươngm Tính I = theo m? x + 3x + m+2 m+1 m+2 2m + A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+2 m+1 m+2 Câu 23 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A 4πR3 B πR3 C πR3 D πR3 Câu 24 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 20 (m) B S = 12 (m) C S = 28 (m) D S = 24 (m) Câu 25 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 600 B 450 C 300 D 360 √ x− x+2 Câu 26 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D Trang 2/6 Mã đề 001 Câu 27 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−4; −1) B S = [−1; +∞) C S = (−1; +∞) D S = (−∞; −4) ∪ (−1; +∞) x2 + 2x là: Câu 28 Khoảng cách hai điểm cực trị đồ thị hàm số y = x−1 √ √ √ √ A −2 B 15 C D Câu 29 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 4a2 b 2a2 b 2a2 b 4a2 b B √ C √ A √ D √ 3π 3π 2π 2π Câu 30 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x 3π π π 3π B V = C V = D V = A V = Câu 31 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 33,2 B 8,9 C 11 D 2,075 1 Câu 32 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) k(k + 1) 4k(k + 1) A M = B M = C M = D M = 3loga x 2loga x loga x loga x Câu 33 Cho R4 −1 A f (x)dx = 10 R4 B −2 f (x)dx = Tính R1 f (x)dx −1 C 18 D Câu 34 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = 2 2 C (x − 1) + (y − 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 35 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = + 2(ln a)2 B P = C P = ln a D P = 2loga e Câu 36 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = C m = m = −16 D m = m = −10 Câu 37 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 a b c Câu 38 Cho P = , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2abc C P = 2a+b+c D P = 2a+2b+3c π R2 Câu 39 Biết sin 2xdx = ea Khi giá trị a là: Trang 3/6 Mã đề 001 A − ln B Câu 40 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln C ln D B y′ = (1 + sin 3x)5 x+cos3x ln D y′ = x+cos3x ln Câu 41 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox C m < −2 D m > m < −1 A m > m < − B m > Câu 42 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = −x4 + 2x2 C y = x3 − 3x2 D y = −2x4 + 4x2 Câu 43 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc hai đường thẳng AC √ DB′ Tính giá trị cos α.√ A B C D 2 Câu 44 Chọn mệnh đề mệnh đề sau: R R e2x +C A x dx =5 x + C B e2x dx = R R (2x + 1)3 C (2x + 1)2 dx = + C D sin xdx = cos x + C π cos x F(− ) = π Khi giá trị Câu 45 Biết hàm F(x) nguyên hàm hàm f (x) = sin x + cos x F(0) bằng: 3π 6π 6π 6π A ln + B C ln + D ln + 5 5 r 3x + Câu 46 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (1; +∞) C D = (−∞; 0) D D = (−1; 4) Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = −1 + 2t x = − 2t x = + 2t x = + 2t y = + 3t y = −2 + 3t y = −2 − 3t y = −2 + 3t A B C D z = −4 − 5t z = + 5t z = − 5t z = − 5t Câu 48 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ 3a 3a 3a 30 a 15 A B C D 10 Câu 49 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 A 6a B 3a C 4a D 9a3 Câu 50 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Trang 4/6 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/6 Mã đề 001