Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 6 trang) Mã đề 001 Câu 1 Kết quả nào đúng? A ∫ sin2 x cos x = − sin3x 3 +C B ∫ sin2 x cos x = −co[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Kết đúng? R R sin3 x A sin2 x cos x = − + C B sin2 x cos x = −cos2 x sin x + C 3 R R sin x C sin2 x cos x = + C D sin2 x cos x = cos2 x sin x + C Câu Cho sau√ sai? √ √5 hai số thực a, bthỏa√2mãn √a2> b > Kết luận √5 − A a < b B a > b C a < b− D ea > eb p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếux = y = −3 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (2; −1; 2) C (−2; −1; 2) D (2; −1; −2) √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H3) C (H1) D (H4) Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; ln3) C S = [ 0; +∞) D S = (−∞; 2) Câu Hàm số sau khơng có cực trị? A y = cos x C y = x4 + 3x2 + B y = x3 − 6x2 + 12x − D y = x2 Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ C m ≥ −1 D m > Câu 10 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 11 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A π B C D −1 √ Câu 12 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; ) B (0; 1) C ( ; +∞) D (1; +∞) 4 Câu 13 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD có chiều cao chiều cao tứ diện √ √ √ tiếp 2 √ π 3.a 2π 2.a π 2.a A B π 3.a2 C D 3 Trang 1/6 Mã đề 001 Câu 14 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A − B C D 6 √ sin 2x R bằng? Câu 15 Giá trị lớn hàm số y = ( π) √ A B C π D π R5 dx = ln T Giá trị T là: 2x − √ A T = B T = 81 C T = D T = √ x Câu 17 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H3) B (H4) C (H1) D (H2) Câu 16 Biết Câu 18 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ C R = D R = 29 A R = B R = 21 Câu 19 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(8; ; 19) C C(6; 21; 21) D C(6; −17; 21) p Câu 20 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếu < x < y < −3 C Nếux = y = −3 D Nếux > thìy < −15 Câu 21 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x2 − 2x + C y = −x4 + 3x2 − D y = x3 − 2x2 + 3x + Câu 22 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m < C m > D m ≥ Câu 23 √ Hình nón có bán kính đáy R, đường sinh l diện tích xung quanh nó√bằng B 2πRl C πRl D 2π l2 − R2 A π l2 − R2 Câu 24 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số nghịch biến R C Hàm số nghịch biến (0; +∞) D Hàm số đồng biến R Câu 25 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = C m = −2 D m = 13 Câu 26 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn ngồi 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình B 24π(dm3 ) C 6π(dm3 ) D 54π(dm3 ) A 12π(dm3 ) √ x− x+2 Câu 27 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D Câu 28 Họ nguyên hàm hàm số y = (x − 1)e x là: A xe x + C B xe x−1 + C C (x − 1)e x + C D (x − 2)e x + C Trang 2/6 Mã đề 001 Câu 29 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 x −2x +3x+1 Câu 30 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số đồng biến khoảng (−∞; 1) (3; +∞) B Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) C Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) D Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) Câu 31 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ sin góc MN mặt phẳng (S BD) √ (ABCD) 60 Tính √ MN mặt phẳng 10 B C D A 5 Câu 32 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; −2; −3) B (−1; 1; 1) C (1; 1; 3) D (1; −1; 1) x−3 y−6 z−1 Câu 33 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: y−1 z−1 x y−1 z−1 x = = B = = A −1 −1 −3 x y−1 z−1 x−1 y z−1 C = = D = = −3 −1 −3 Câu 34 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = ln a C P = + 2(ln a)2 D P = √ Câu 35 Tính đạo hàm hàm số y = log4 x2 − 1 x x x A y′ = √ C y′ = D y′ = B y′ = 2 (x − 1) ln (x − 1)log4 e 2(x − 1) ln x2 − ln Câu 36 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080251 đồng C 36080253 đồng D 36080255 đồng Câu 37 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 38 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2abc B P = 2a+b+c C P = 26abc D P = 2a+2b+3c Câu 39 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Câu 40 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x = ay ⇔ x = y x y C Nếu a < a > a ⇔ x < y D Nếu a > a x > ay ⇔ x < y π R2 Câu 41 Biết sin 2xdx = ea Khi giá trị a là: A B − ln C D ln Trang 3/6 Mã đề 001 Câu 42 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C −4 D Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 31 A M( ; ; ) 3 10 16 B M( ; ; ) 3 21 C M( ; ; ) 3 11 17 D M( ; ; ) 3 Câu 44 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A B C 12 D Câu 45 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng C 36080255 đồng Câu 46 Biết π R2 B 36080251 đồng D 36080254 đồng sin 2xdx = ea Khi giá trị a là: A B ln C D − ln Câu 47 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = 2loga e C P = + 2(ln a)2 D P = Câu 48 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (3; 5) C (−3; 0) D (−1; 1) √ Câu 49 Tính đạo hàm hàm số y = log4 x2 − A y′ = √ x2 − ln B y′ = (x2 x − 1)log4 e C y′ = 2(x2 x − 1) ln D y′ = (x2 x − 1) ln Câu 50 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 25 B 27 C 29 D 23 Trang 4/6 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/6 Mã đề 001