Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 6 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến t[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m > C m ≥ e−2 D m > 2e Câu Bất đẳng thức sau đúng? A 3−e > 2−e C 3π < 2π √ √ e π B ( √3 − 1) < ( √3 − 1) π e D ( + 1) > ( + 1) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(6; 21; 21) C C(6; −17; 21) D C(20; 15; 7) A C(8; ; 19) √ ′ Câu Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA = 3a Thể tích khối √ lăng trụ cho là: √ D 3a3 A 3a3 B a3 C 3a3 Câu Hàm số sau khơng có cực trị? A y = x4 + 3x2 + C y = x2 B y = cos x D y = x3 − 6x2 + 12x − Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = + 2x x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B ∀m ∈ R C < m , D −4 < m < Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 20a3 C 60a3 D 30a3 Câu 8.√ Cho √hai số thực a, bthỏa mãn a > b > Kết luận√nào sau√ sai? √5 √ A a > b B ea > eb C a− < b− D a < b Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A Câu 10 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − m2 − 12 4m2 − A B C D m 2m 2m 2m √ Câu 11 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C D a Câu 12 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 2π B 4π C 3π D π Trang 1/6 Mã đề 001 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng C Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng D Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = Câu 13 Cho hàm số y = Câu 14 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = −x4 + 2x2 + C y = x4 + 2x2 + D y = x4 + Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = −7 D m = √ Câu √ 16 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 300 B 600 C 1200 D 450 Câu 17 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(8; ; 19) C C(6; 21; 21) D C(6; −17; 21) x tập xác định Câu 18 Giá trị nhỏ hàm số y = x +1 1 A y = −1 B y = C y = − D y = R R R R 2 Câu 19 √ Hàm số sau√đây đồng biến R? A y = x2 + x + − x2 − x + C y = x4 + 3x2 + B y = x2 D y = tan x Câu 20 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 Câu 21 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 450 B 600 C 300 D 360 Câu 22 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; 1; 0) C (0; 0; 5) D (0; −5; 0) Câu 23 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ a b2 − 3a2 a2 3b2 − a2 A VS ABC = B VS ABC = √ 12 √ 12 3a b 3ab2 C VS ABC = D VS ABC = 12 12 Câu 24 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 28 (m) B S = 24 (m) C S = 20 (m) D S = 12 (m) Trang 2/6 Mã đề 001 Câu 25 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = sin x x−1 C y = tan x D y = x3 − 2x2 + 3x + 2x − Câu 26 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±1 B m = ±2 C m = ±3 D m = ± √ Câu 27 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng√góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt phẳng (S CD) √ a a a 10 A B C D a 1 Câu 28 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > B m > C m > m < D m < Câu 29 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga xn = log x , (x > 0, n , 0) B loga x có nghĩa với ∀x ∈ R an C loga (xy) = loga x.loga y Câu 30 Cho R4 −1 A f (x)dx = 10 D loga = a loga a = R4 B 18 f (x)dx = Tính R1 f (x)dx −1 C −2 D Câu 31 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa3 3 3 B 3πa C πa D A πa 3 √3 a2 b Câu 32 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A B − C D 3 Câu 33 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 Câu 34 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 10 31 11 17 21 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 35 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 10π C 8π D 12π √ Câu 36 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ (4; +∞) Trang 3/6 Mã đề 001 Câu 37 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ √ √ cạnh AB, AD Tính khoảng √ cách hai đường thẳng 3a 30 3a 3a a 15 B C D A 10 Câu 38 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 39 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C −2 D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 40 Trong khơng gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ → − −v = (2; 14; 14) −u + 3→ −v = (1; 14; 15) A u + 3→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Câu 41 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C π R2 Câu 42 Biết sin 2xdx = ea Khi giá trị a là: D −3 A − ln B C ln D Câu 43 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080255 đồng C 36080254 đồng D 36080253 đồng Câu 44 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m < −2 C m > m < − D m > m < −1 ′ ′ ′ ′ Câu 45 Cho hình lăng trụ đứng ABCD.A B C D có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc DB′ Tính giá trị cos α √ hai đường thẳng AC √ A B C D 2 Câu 46 Hàm số hàm số sau đồng biến R 4x + A y = B y = x4 + 3x2 x+2 C y = x3 + 3x2 + 6x − D y = −x3 − x2 − 5x d Câu 47 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C √ = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) C a D a A 2a B a Câu 48 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 125π 250π 500π 400π A B C D 9 Câu 49 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln ′ x+cos3x C y = (1 − sin 3x)5 ln D y′ = (1 − sin 3x)5 x+cos3x ln Trang 4/6 Mã đề 001 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C D −2 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/6 Mã đề 001