1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (653)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 121,81 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 6 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có đáy bằng a, AA′ = 4 √ 3a Thể tích khối lă[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ ′ Câu 1.√Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA = 3a Thể tích khối lăng trụ cho là: √ 3 B 3a C 3a3 D a3 A 3a Câu Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = x2 B y = cos x D y = x4 + 3x2 + Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 D A B −6 C Câu 4.√ Cho √hai số thực a, bthỏa√mãn a > b > Kết luận nào√sau sai? √ √ 2 − − D ea > eb A a > b B a B m ≥ C m ≥ D m ≥ −1 Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = −7 D m = Trang 1/6 Mã đề 001 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(1; 1; 2) C I(0; 1; 2) D I(0; 1; −2) Câu 15 Đạo hàm hàm số y = log √2 3x − là: 2 6 D y′ = A y′ = B y′ = C y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 16 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − m2 − 12 4m2 − m2 − 12 B C D A 2m 2m m 2m Câu 17 Cho < a , 1; < x , Đẳng thức sau sai? A loga (x − 2)2 = 2loga (x − 2) B loga2 x = loga x C aloga x = x D loga x2 = 2loga x Câu 18 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 12 (m) B S = 20 (m) C S = 24 (m) D S = 28 (m) đúng? x B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R Câu 19 Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến R C Hàm số nghịch biến (0; +∞) Câu 20 Kết đúng? R sin3 x + C A sin x cos x = − R C sin2 x cos x = −cos2 x sin x + C B R sin2 x cos x = cos2 x sin x + C D R sin3 x sin x cos x = + C Câu 21 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; −5; 0) C (0; 0; 5) D (0; 1; 0) Câu 22 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường hypebol C Đường tròn D Đường parabol dx theo m? + 3x + m+2 m+1 B I = ln( ) C I = ln( ) m+1 m+2 Câu 23 Cho số thực dươngm Tính I = A I = ln( m+2 ) 2m + Rm x2 Câu 24 Hàm số sau đồng biến R? A y = x√2 √ C y = x2 + x + − x2 − x + D I = ln( 2m + ) m+2 B y = x4 + 3x2 + D y = tan x Câu 25 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x2 − 2x + C y = x3 D y = −x4 + 3x2 − Câu 26 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ mặt phẳng đáy Tính cơsin √ (SAC) (SBC) bằng? √ góc hai mặt phẳng A B C D 2 Trang 2/6 Mã đề 001 √ Câu 27 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ a3 a3 2a3 3 B C a A D Câu 28 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình A (x − 1)2 + (y + 1)2 + (z + 2)2 = B (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 √ D (x + 1)2 + (y − 1)2 + (z − 2)2 = C (x + 1)2 + (y − 1)2 + (z − 2)2 = Re lnn x Câu 29 Tính tích phân I = dx, (n > 1) x 1 1 B I = n + C I = D I = A I = n+1 n n−1 Câu 30 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ MN mặt phẳng √ (ABCD) 60 Tính √ sin góc MN mặt phẳng (S BD) 10 A B C D 5 ′ ′ ′ Câu 31 Lăng trụ ABC.A B C có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ a 3a 13 3a 10 3a 13 B C D A 26 13 20 (2 ln x + 3)3 : Câu 32 Họ nguyên hàm hàm số f (x) = x (2 ln x + 3) ln x + (2 ln x + 3)4 (2 ln x + 3)2 A + C B + C C + C D + C 8 Câu 33 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vng √ √ 3a 10 D A 3a B 6a C 3a Câu 34 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 23 27 29 A B C D 4 4 π R2 Câu 35 Biết sin 2xdx = ea Khi giá trị a là: A B − ln C ln D Câu 36 Hình phẳng giới hạn đồ thị hàm y = x +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 √ Câu 37 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = √ D y′ = (x − 1)log4 e (x − 1) ln 2(x − 1) ln x2 − ln √ 2x − x2 + Câu 38 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 39 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m > −2 B −4 ≤ m ≤ −1 C −3 ≤ m ≤ D m < Trang 3/6 Mã đề 001 Câu 40 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng C 36080255 đồng B 36080253 đồng D 36080251 đồng Câu 41 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 400π 250π 125π 500π B C D A 9 d Câu 42 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A 2a B a C a D a Câu 43 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 12a3 B 6a3 C 4a3 D 3a3 Câu 44 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + 2n + B log2 2250 = A log2 2250 = m n 2mn + n + 2mn + n + D log2 2250 = C log2 2250 = n n Câu 45 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 46 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 47 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 48 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = C P = ln a √ Câu 49 Tính đạo hàm hàm số y = log4 x2 − x x A y′ = B y′ = √ C y′ = (x − 1)log4 e 2(x − 1) ln x2 − ln D P = + 2(ln a)2 D y′ = (x2 x − 1) ln Câu 50 Hàm số hàm số sau có đồ thị hình vẽ bên A y = x3 − 3x2 B y = −2x4 + 4x2 C y = −x4 + 2x2 + D y = −x4 + 2x2 Trang 4/6 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/6 Mã đề 001

Ngày đăng: 04/04/2023, 11:15