1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (822)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 123,26 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính qng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 20 (m) B S = 24 (m) C S = 12 (m) D S = 28 (m) Rm dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + m+2 2m + m+1 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+2 m+2 m+1 −u (2; −2; 1), kết luận sau đúng? Câu Trong hệ tọa độ Oxyz cho → √ không gian với→ → − − −u | = −u | = A | u | = B | u | = C |→ D |→ đúng? x B Hàm số nghịch biến (0; +∞) D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến R C Hàm số đồng biến R Câu Cho < a , 1; < x , Đẳng thức sau sai? B loga (x − 2)2 = 2loga (x − 2) A loga2 x = loga x C aloga x = x D loga x2 = 2loga x p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếux = y = −3 C Nếu < x < y < −3 D Nếu < x < π y > − 4π2 Câu Cho hàm số y = A bc > ax + b có đồ thị hình vẽ bên Kết luận sau sai? cx + d B ac < C ad > D ab < Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 6πR3 C 4πR3 D 2πR3 R Câu R9 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = 2F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C √ d = 1200 Gọi Câu 10 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a 15 a A a 15 B C D 3 Câu 11 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ −1 B m ≥ C m > D m ≥ Câu 12 Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab) = ln a ln b B ln(ab2 ) = ln a + ln b a ln a C ln(ab2 ) = ln a + (ln b)2 D ln( ) = b ln b Trang 1/5 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; 1; 2) C I(0; −1; 2) D I(1; 1; 2) Câu 14 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A Câu 15 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ A ln − B − ln − C − ln 2 D ln + Câu 16 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 2 C (S ) : (x + 2) + (y + 1) + (z − 1) = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = Câu 17 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (−2; −3; −1) C M ′ (2; 3; 1) D M ′ (−2; 3; 1) Câu 18 Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B loga x > loga y C log x > log y a D ln x > ln y a Câu 19 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = −2 C m = D m = −15 Câu R20 Công thức sai? A sin x = − cos x + C R C cos x = sin x + C R B e x = e x + C R D a x = a x ln a + C Câu 21 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ A R = 21 B R = C R = D R = 29 −u (2; −2; 1), kết luận sau đúng? Câu 22 Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ Câu 23 Kết đúng? R A sin2 x cos x = cos2 x sin x + C sin3 x B sin x cos x = + C R R sin3 x C sin2 x cos x = −cos2 x sin x + C + C D sin2 x cos x = − √ Câu 24 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành 10π π A V = B V = C V = D V = π 3 R Câu 25 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 2πR3 C πR3 D 4πR3 Trang 2/5 Mã đề 001 Câu 26 Xác định tập tất giá trị tham số m để phương trình 2x3 + x2 − 3x − có nghiệm phân biệt 19 19 A S = (−5; − ) ∪ ( ; 6) B S = (−2; − ) ∪ ( ; 6) 4 4 19 C S = (−3; −1) ∪ (1; 2) D S = (−2; − ) ∪ ( ; 7) 4 m = − 2 Câu 27 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 + − 4x + B x3 − x4 + 2x C 2x3 − 4x4 D x3 + − 4x 4 1 Câu 28 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > B m > m < C m < D m > Câu 29 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 24 12 √ Câu 30 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ 2a3 a3 a3 B C D a3 A 3 Câu 31 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vng √ √ 3a 10 D A 6a B 3a C 3a Câu 32 Cho R4 −1 A f (x)dx = 10 R4 B 18 f (x)dx = Tính R1 f (x)dx −1 C D −2 Câu 33 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; −2; −3) B (1; 1; 3) C (−1; 1; 1) D (1; −1; 1) Câu 34 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B −2 C D −4 Câu 35 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 π R2 Câu 36 Biết sin 2xdx = ea Khi giá trị a là: D A B ln C D − ln Câu 37 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 8π C 12π D 6π Trang 3/5 Mã đề 001 Câu 38 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ cách hai đường thẳng √ √ a 15 3a 3a 30 3a A B C D 2 10 cos x π Câu 39 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 6π 3π A B ln + C ln + D ln + 5 5 Câu 40 Hàm số hàm số sau đồng biến R A y = −x3 − x2 − 5x B y = x4 + 3x2 4x + C y = x3 + 3x2 + 6x − D y = x+2 d Câu 41 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) A a B a C 2a D a Câu 42 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B −4 ≤ m ≤ −1 C m > −2 D −3 ≤ m ≤ Câu 43 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + A log2 2250 = B log2 2250 = n n 2mn + 2n + 2mn + n + C log2 2250 = D log2 2250 = m n Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 11 17 10 31 21 B M( ; ; ) C M( ; ; ) D M( ; ; ) A M( ; ; ) 3 3 3 3 3 Câu 45 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π A B C D 6π 5 x2 Câu 46 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 128 64 32 Câu 47 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa 15 πa2 17 A B C D 4 Câu 48 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx (x2 − 2x)dx Trang 4/5 Mã đề 001 Câu 49 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080253 đồng C 36080255 đồng D 36080251 đồng Câu 50 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 6a3 C 3a3 D 9a3 A 4a3 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 04/04/2023, 11:10