Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có đáy bằng a, AA′ = 4 √ 3a Thể tích khối lă[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ ′ ′ ′ ′ Câu 1.√Cho lăng trụ ABC.A √ B3 C có đáy a, AA = 3a Thể tích khối3lăng trụ cho là: A 3a B 3a C 3a D a Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 D C(20; 15; 7) A C(6; 21; 21) B C(6; −17; 21) C C(8; ; 19) √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? 10π π A V = π B V = C V = D V = 3 −x Câu Tìm tất giá trị tham số m để hàm số y = xe + mx đồng biến R A m > e2 B m ≥ e−2 C m > D m > 2e Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 6; 0) C (0; 2; 0) D (−2; 0; 0) Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ A R = 21 B R = C R = 29 D R = Câu Kết đúng? R A sin2 x cos x = cos2 x sin x + C R C sin2 x cos x = −cos2 x sin x + C sin3 x + C R sin3 x D sin2 x cos x = − + C B R sin2 x cos x = Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 4πR3 C 2πR3 D 6πR3 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D −z x y Câu 10 Cho x, y, z ba số thực khác thỏa mãn = = 10 Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 11 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 2; 3) B A(1; 2; 0) C A(0; 0; 3) D A(1; 0; 3) Câu 12 Đường cong hình bên đồ thị hàm số nào? A y = x4 + 2x2 + B y = −x4 + C y = x4 + D y = −x4 + 2x2 + R Câu 13 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = 2F(x) − + C D f (2x − 1)dx = F(2x − 1) + C Trang 1/5 Mã đề 001 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(0; 1; −2) C I(1; 1; 2) D I(0; −1; 2) Câu 15 Tập nghiệm bất phương trình log (x − 1) ≥ là: A [2; +∞) B (1; 2) C (1; 2] D (−∞; 2] √ Câu 16 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A C B a D Câu 17 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (−2; −1; 2) C (2; −1; 2) D (−2; 1; 2) Câu 18 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 Câu 19 Hàm số sau khơng có cực trị? A y = x4 + 3x2 + B y = cos x C y = x3 − 6x2 + 12x − D y = x2 x Câu 20 Giá trị nhỏ hàm số y = tập xác định x +1 1 B y = −1 C y = − D y = A y = R R R R 2 Câu 21 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A 3π C √ B D 3π 3 Câu 22 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x −1+ B y = +1− A y = ln ln 5 ln ln x x C y = + D y = − ln 5 ln ln Câu 23 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 − 2x2 + 3x + C y = x2 − 2x + D y = x3 Câu R24 Kết đúng? R A sin2 x cos x = cos2 x sin x + C B sin2 x cos x = −cos2 x sin x + C R R sin3 x sin3 x C sin2 x cos x = + C D sin2 x cos x = − + C 3 √ x Câu 25 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H1) B (H4) C (H3) D (H2) Câu 26 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (1; −2; 7) B (4; −6; 8) C (−2; 3; 5) D (−2; 2; 6) Câu 27 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Trang 2/5 Mã đề 001 Câu 28 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ mặt phẳng đáy Tính cơsin √ √ góc hai mặt phẳng (SAC) (SBC) bằng? A B C D 2 Câu 29 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 20 5πa3 5 5π a B V = πa C V = D V = πa A V = 6 Câu 30 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 4a2 b 2a2 b 4a2 b C √ D √ A √ B √ 3π 3π 2π 2π Câu 31 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hoành độ nhỏ A S = (−4; −1) B S = (−∞; −4) ∪ (−1; +∞) C S = [−1; +∞) D S = (−1; +∞) m 3 Câu 32 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 A S = (−3; −1) ∪ (1; 2) B S = (−2; − ) ∪ ( ; 6) 4 19 19 C S = (−2; − ) ∪ ( ; 7) D S = (−5; − ) ∪ ( ; 6) 4 4 Câu 33 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình A (x − 1)2 + (y + 1)2 + (z + 2)2 = B (x + 1)2 + (y − 1)2 + (z − 2)2 = √ C (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 D (x + 1)2 + (y − 1)2 + (z − 2)2 = Câu 34 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a B C D A 3 √ 2x − x2 + Câu 35 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 36 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 A 4a B 3a C 6a D 9a3 Câu 37 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −4 D −2 x + mx + Câu 38 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = −1 B Khơng có m C m = D m = Câu 39 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m > −2 B m < C −3 ≤ m ≤ D −4 ≤ m ≤ −1 Trang 3/5 Mã đề 001 Câu 40 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A ln + 5 B ln + 6π C 6π π cos x F(− ) = π Khi giá trị sin x + cos x D 3π ln + Câu 41 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 3a 3a 30 B C D A 10 2 Câu 42 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 10π C 12π D 6π Câu 43 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080255 đồng C 36080253 đồng D 36080254 đồng Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 31 11 17 21 10 16 B M( ; ; ) C M( ; ; ) D M( ; ; ) A M( ; ; ) 3 3 3 3 3 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 45 Trong khơng gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 46 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 47 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A x dx =5 x + C B (2x + 1)2 dx = + C R R e2x C e2x dx = +C D sin xdx = cos x + C Câu 48 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B −3 ≤ m ≤ C m > −2 D m < Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B −2 C D Câu 50 Biết a, b ∈ Z cho A R B (x + 1)e2x dx = ( ax + b 2x )e + C Khi giá trị a + b là: C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001