1. Trang chủ
  2. » Tất cả

Đề ôn toán thptqg (882)

13 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 153,33 KB

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI TOÁN SỬ THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất[.]

TỐN PDF LATEX TRẮC NGHIỆM ƠN THI TỐN SỬ THPT (Đề thi có 10 trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền khơng 110 triệu đồng (cả vốn lẫn lãi), biết thời gian gửi tiền người khơng rút tiền lãi suất không thay đổi? A 18 tháng B 16 tháng C 17 tháng D 15 tháng tan x + m nghịch biến khoảng Câu [2D1-3] Tìm giá trị thực tham số m để hàm số y = m tan x +  π 0; A (1; +∞) B (−∞; 0] ∪ (1; +∞) C [0; +∞) D (−∞; −1) ∪ (1; +∞) Câu Tìm m để hàm số y = mx3 + 3x2 + 12x + đạt cực đại x = A m = −1 B m = −3 C m = −2 D m = √ Câu Cho khối chóp tam giác S ABC có cạnh đáy a Góc cạnh bên mặt phẳng đáy 300 Thể theo a √ tích khối chóp S ABC3 √ √ √ a a a3 a3 A B C D 18 36 6 Câu Cho hàm số y = x3 − 2x2 + x + 1.!Mệnh đề đúng? A Hàm số đồng biến khoảng ; B Hàm số nghịch biến khoảng (1; +∞) ! ! 1 C Hàm số nghịch biến khoảng ; D Hàm số nghịch biến khoảng −∞; 3 x−3 x−2 x−1 x + + + y = |x + 2| − x − m (m tham x−2 x−1 x x+1 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A [2; +∞) B (−∞; 2] C (−∞; 2) D (2; +∞) Câu [4-1213d] Cho hai hàm số y = Câu Z Các khẳng định Z sau sai? k f (x)dx = k A Z C Z !0 f (x)dx, k số B f (x)dx = f (x) Z Z Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C D f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Câu [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m ≥ C m > D m ≤ 4 4 − xy Câu [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 18 11 − 29 11 − 19 11 + 19 B Pmin = C Pmin = D Pmin = A Pmin = 21 9 Câu 10 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Trang 1/10 Mã đề Câu 11 Tứ diện thuộc loại A {5; 3} B {3; 4} C {4; 3} D {3; 3} Câu 12 [4-c] Xét số thực dương x, y thỏa mãn x + 2y = Khi đó, giá trị lớn biểu thức P = (2x2 + y)(2y2 + x) + 9xy 27 C 18 D 27 A 12 B    x = + 3t     Câu 13 [1232h] Trong không gian Oxyz, cho đường thẳng d :  y = + 4t Gọi ∆ đường thẳng qua     z = điểm A(1; 1; 1) có véctơ phương ~u = (1; −2; 2) Đường phân giác góc nhọn tạo d ∆ có phương  trình            x = + 7t x = −1 + 2t x = −1 + 2t x = + 3t                 A  B  y=1+t y = −10 + 11t C  y = −10 + 11t D  y = + 4t                 z = + 5t z = −6 − 5t z = − 5t z = − 5t Câu 14 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh vng góc √ Khoảng cách từ A đến (S BC) √ với mặt đáy S O = a √ a 57 a 57 B C a 57 D A 17 19 x+1 Câu 15 Tính lim x→−∞ 6x − 1 C D A B [ = 60◦ , S O a Góc BAD √ 2a 57 19 Câu 16 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 12 năm B 11 năm C 14 năm D 10 năm Câu 17 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e + B xy = −e − C xy0 = ey + D xy0 = ey − Câu 18 Thể tích khối chóp có diện tích đáy S chiều cao h 1 A V = 3S h B V = S h C V = S h D V = S h Câu 19 [2] Một người gửi 9, triệu đồng với lãi suất 8, 4% năm lãi suất hàng năm nhập vào vốn Hỏi theo cách sau năm người thu tổng số tiền 20 triệu đồng (Biết lãi suất không thay đổi) A năm B 10 năm C năm D năm  π Câu 20 [2-c] Giá trị lớn hàm số y = e x cos x đoạn 0; √ √ π4 π3 π6 A e B C e D e 2 Câu 21 [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = z1 thỏa mãn |z1 − − i| = Diện tích hình phẳng giới hạn hai quỹ tích biểu diễn hai số phức z z1 gần giá trị nhất? A 0, B 0, C 0, D 0, Câu 22 Giá√trị cực đại hàm số y√= x3 − 3x2 − 3x + √ A −3 − B − C −3 + √ D + Trang 2/10 Mã đề 1 Câu 23 Hàm số y = x + có giá trị cực đại x A B −2 C D −1 Câu 24 Khối đa diện loại {3; 4} có số đỉnh A B C 10 D Câu 25 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B a C D Câu 26 Khối đa diện loại {5; 3} có số mặt A 12 B 20 C D 30 2mx + 1 Câu 27 Giá trị lớn hàm số y = đoạn [2; 3] − m nhận giá trị m−x A −5 B C −2 D Câu 28 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z f (x)dx = f (x) C Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C √ Câu 29 [1] Cho a > 0, a , Giá trị biểu thức loga a 1 C −3 D − A B 3 ◦ d Câu 30 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC = 30 , biết S BC tam giác cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 26 13 Câu 31 Khối đa diện loại {3; 4} có số mặt A 10 B 12 C D Câu 32 Khối đa diện loại {4; 3} có số đỉnh A B 10 C D x2 Câu 33 [2] Tổng nghiệm phương trình x−1 = 8.4 x−2 A − log2 B − log2 C − log3 D − log2 Câu 34 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R    x=t     Câu 35 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :  y = −1 hai mặt phẳng (P), (Q)     z = −t có phương trình x + 2y + 2z + = 0, x + 2y + 2z + = Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) (Q) Trang 3/10 Mã đề A (x − 3)2 + (y − 1)2 + (z − 3)2 = 2 C (x + 3) + (y + 1) + (z + 3) = B (x + 3)2 + (y + 1)2 + (z − 3)2 = 2 D (x − 3) + (y + 1) + (z + 3) = Câu 36 [3-1213h] Hình hộp chữ nhật khơng có nắp tích 3200 cm3 , tỷ số chiều cao chiều rộng Khi tổng mặt hình nhỏ nhất, tính diện tích mặt đáy hình hộp A 1200 cm2 B 120 cm2 C 160 cm2 D 160 cm2 Câu 37 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 6) C (1; 3; 2) D (2; 4; 3) − n2 Câu 38 [1] Tính lim bằng? 2n + 1 A B − 2n + Câu 39 Tìm giới hạn lim n+1 A B C D C D Câu 40 là: √ Thể tích khối lăng√trụ tam giác có cạnh √ 3 A B C 12 D Câu 41 Cho hai đường thẳng phân biệt d d0 đồng phẳng Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có B Có hai C Khơng có D Có hai x2 Câu 42 Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x đoạn [−1; 1] Khi e 1 A M = , m = B M = e, m = C M = e, m = D M = e, m = e e x2 − 5x + Câu 43 Tính giới hạn lim x→2 x−2 A B −1 C D Câu 44 Cho hình chóp S ABCD có đáy ABCD hình vuông cạnh 2a, tam giác S AB đều, H trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là√ √ a3 a3 2a3 4a3 A B C D 3 Câu 45 [2] Cho hàm số y = ln(2x + 1) Tìm m để y0 (e) = 2m + 1 + 2e + 2e − 2e A m = B m = C m = 4e + − 2e − 2e Câu 46 [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) A B 2e + C e D m = − 2e 4e + D 2e Câu 47 Cho hàm số y = x3 − 3x2 + Tích giá trị cực đại giá trị cực tiểu A −3 B −6 C D Câu 48 Khối đa diện loại {3; 5} có số đỉnh A 20 B 12 C D 30 Câu 49 [2]√Tìm m để giá trị lớn hàm số y = 2x3 + (m2√+ 1)2 x [0; 1] A m = ± B m = ±1 C m = ± D m = ±3 Trang 4/10 Mã đề Câu 50 [12213d] Có giá trị nguyên m để phương trình nhất? A B Câu 51 [12215d] Tìm m để phương trình x+ A m ≥ B < m ≤ 2n − Câu 52 Tính lim 3n + n4 A B √ C 1−x2 √ 3|x−1| = 3m − có nghiệm D − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 − 4.2 x+ 1−x2 D Câu 53 Cho số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = Tìm giá trị nhỏ P = xy + x + 2y + 17 A −5 B −9 C −15 D −12 C Câu 54 Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C D0 , biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4) Tìm tọa độ đỉnh A0 A A0 (−3; 3; 3) B A0 (−3; 3; 1) C A0 (−3; −3; 3) D A0 (−3; −3; −3) x−3 bằng? Câu 55 [1] Tính lim x→3 x + A −∞ B +∞ C D Câu 56 Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm Câu 57.! Dãy số sau có giới !n hạn 0? n B A 3 !n C e !n D − Câu 58 Khối đa diện thuộc loại {3; 4} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt Câu 59 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→a x→b x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) D lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b Câu 60 Khối đa diện thuộc loại {3; 5} có đỉnh, cạnh, mặt? A 20 đỉnh, 30 cạnh, 12 mặt B 12 đỉnh, 30 cạnh, 12 mặt C 20 đỉnh, 30 cạnh, 20 mặt D 12 đỉnh, 30 cạnh, 20 mặt Câu 61 Tính lim n+3 A B C D Câu 62 [2D1-3] Tìm giá trị tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − đồng biến khoảng có độ dài lớn 5 A m > − B − < m < C m ≤ D m ≥ 4 Câu 63 Gọi M, m giá trị lớn nhất, giá trị nhỏ hàm số y = (x2 − 3)e x đoạn [0; 2] Giá trị biểu thức P = (m2 − 4M)2019 A B e2016 C 22016 D Trang 5/10 Mã đề Câu 64 Cho hình chóp S ABCD có cạnh đáy 2a Mặt bên hình chóp tạo với đáy góc 60◦ Mặt phẳng (P) chứa cạnh AB qua trọng tâm G tam giác S AC cắt S C, S D M, n Thể tích khối√chóp S ABMN √ √ √ 4a3 5a3 2a3 a3 B C D A 3 Câu 65 [2] Tổng nghiệm phương trình x − 12.3 x + 27 = A 12 B 10 C D 27 Câu 66 Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D Câu 67 Khối đa diện thuộc loại {3; 3} có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Câu 68 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Z Câu 69 Cho xe2x dx = ae2 + b, a, b số hữu tỷ Tính a + b A B Câu 70.√Biểu thức sau khơng có nghĩa B 0−1 A (− 2)0 C D C (−1)−1 D √ −1 −3 Câu 71 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m > C m ≤ D m < 4 4 Câu 72 Một máy bay hạ cánh sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần với vận tốc v(t) = − t + 69(m/s), t khoảng thời gian tính giây Hỏi giây cuối trước dừng hẳn, máy bay di chuyển mét? A 25 m B 1587 m C 27 m D 387 m √3 Câu 73 [1-c] Cho a số thực dương Giá trị biểu thức a : a2 A a B a C a D a Câu 74 [1] Cho a > 0, a , Giá trị biểu thức log a1 a2 1 A B C − 2 Câu 75 [1] Phương trình log2 4x − log 2x = có nghiệm? A Vơ nghiệm B nghiệm C nghiệm Câu 76 [3-12213d] Có giá trị nguyên m để phương trình nhất? A B C D −2 D nghiệm 3|x−1| = 3m − có nghiệm D Câu 77 Nếu hình chóp có chiều cao cạnh đáy tăng lên n lần thể tích tăng lên? A 2n3 lần B n3 lần C 2n2 lần D n3 lần Trang 6/10 Mã đề x−1 có đồ thị (C) Gọi I giao điểm hai tiệm cận (C) Xét x+2 tam giác B thuộc (C), đoạn thẳng AB √ ABI có hai đỉnh A, √ √ có độ dài A B C 2 D Câu 78 [3-1214d] Cho hàm số y = Câu 79 Cho tứ diện ABCD tích 12 G trọng tâm tam giác BCD Tính thể tích V khối chóp A.GBC A V = B V = C V = D V = Câu 80 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp đơi thể tích khối hộp tương ứng sẽ: A Tăng gấp lần B Tăng gấp lần C Tăng gấp đôi D Tăng gấp lần Z ln(x + 1) dx = a ln + b ln 3, (a, b ∈ Q) Tính P = a + 4b Câu 81 Cho x2 A −3 B C D d = 300 Câu 82 Cho khối lăng trụ đứng ABC.A0 B0C có đáy ABC tam giác vng A BC = 2a, ABC Độ dài cạnh bên √ CC = 3a Thể tích V khối lăng trụ cho √ √ 3a a A V = B V = 6a3 C V = D V = 3a3 2 √ √ Câu 83 [2] Phương trình log4 (x + 1) + = log − x + log8 (4 + x)3 có tất nghiệm? A nghiệm B nghiệm C nghiệm D Vô nghiệm Câu 84 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D Câu 85 Cho hình chữ nhật ABCD, cạnh AB = 4, AD = Gọi M, N trung điểm cạnh AB CD Cho hình chữ nhật quay quanh MN ta hình trụ trịn xoay tích A 32π B 16π C 8π D V = 4π √ Câu 86 [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 63 C Vô số D 64 log 2x Câu 87 [3-1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x 0 A y0 = B y = C y = D y = x3 2x3 ln 10 x3 ln 10 2x3 ln 10 Câu 88 Cho hai đường thẳng d d0 cắt Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có hai B Khơng có C Có D Có vơ số Câu 89 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B 2020 C log2 2020 D log2 13 Câu 90 Tìm m để hàm số y = x4 − 2(m + 1)x2 − có cực trị A m > −1 B m ≥ C m > x2 − 12x + 35 Câu 91 Tính lim x→5 25 − 5x A +∞ B −∞ C Câu 92 Xác định phần ảo số phức z = (2 + 3i)(2 − 3i) A B C 13 Câu 93 Mỗi đỉnh hình đa diện đỉnh chung A Hai cạnh B Bốn cạnh C Năm cạnh D m > D − D Không tồn D Ba cạnh Trang 7/10 Mã đề √ Câu 94 Tính lim A +∞ √ 4n2 + − n + 2n − 3 B C D Câu 95 Tìm tất khoảng đồng biến hàm số y = x3 − 2x2 + 3x − A (1; +∞) B (−∞; 3) C (1; 3) D (−∞; 1) (3; +∞) 2x + Câu 96 Tính giới hạn lim x→+∞ x + 1 A B C −1 D Câu 97 Cho hình chóp S ABCD có đáy ABCD hình thang vng A D; AD = CD = a; AB = 2a; tam giác√S AB nằm mặt √ phẳng vng góc với (ABCD) Thể tích khối chóp √ S ABCD 3 √ a a a A B C a3 D Câu 98 Khối đa diện có số đỉnh, cạnh, mặt nhất? A Khối bát diện B Khối lập phương C Khối lăng trụ tam giác D Khối tứ diện Câu 99 [3-1122h] Cho hình lăng trụ ABC.A0 B0C có đáy tam giác cạnh a Hình chiếu vng góc A0 lên √ mặt phẳng (ABC) trung với tâm tam giác ABC Biết khoảng cách đường thẳng AA a Khi thể tích khối lăng trụ BC √ √ √ √ a3 a3 a3 a3 A B C D 36 24 12 !4x !2−x ≤ Câu 100 Tập số x thỏa mãn # ! " ! # " 2 2 ; +∞ B −∞; C − ; +∞ D −∞; A 3 Câu 101 Mặt phẳng (AB0C ) chia khối lăng trụ ABC.A0 B0C thành khối đa diện nào? A Một khối chóp tam giác, khối chóp tứ giác B Hai khối chóp tứ giác C Hai khối chóp tam giác D Một khối chóp tam giác, khối chóp ngữ giác Câu 102 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x) + g(x)] = a + b B lim [ f (x)g(x)] = ab x→+∞ x→+∞ f (x) a C lim [ f (x) − g(x)] = a − b D lim = x→+∞ x→+∞ g(x) b Câu 103 Cho hình chóp S ABCD √ có đáy ABCD hình vng cạnh a Hai mặt phẳng (S AB) (S AD) vng √ góc với đáy, S C = a3 √3 Thể tích khối chóp S 3.ABCD a3 a a A B C D a3 3 Câu 104 Ba kích thước hình hộp chữ nhật làm thành cấp số nhân có cơng bội Thể tích hình hộp √ 1728 Khi đó, kích thước hình hộp √ cho A 3, 3, 38 B 2, 4, C 8, 16, 32 D 6, 12, 24 Câu 105 [1] Tập ! xác định hàm số! y = log3 (2x + 1) ! 1 A −∞; − B −∞; C ; +∞ 2 ! D − ; +∞ Trang 8/10 Mã đề Câu 106 Cho I = Z x √ dx = 4+2 x+1 trị P = a + b + c + d bằng? A P = −2 B P = a a + b ln + c ln d, biết a, b, c, d ∈ Z phân số tối giản Giá d d C P = 16 D P = 28 Câu 107 Khối lăng trụ tam giác có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Câu 108 [1] Hàm số đồng biến khoảng (0; +∞)? A y = log 41 x B y = log π4 x √ C y = loga x a = − D y = log √2 x Câu 109 [1233d-2] Mệnh đề sau sai? Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R A Câu 110 Hàm số y = x3 − 3x2 + đồng biến trên: A (−∞; 0) (2; +∞) B (−∞; 2) C (0; 2) D (0; +∞) Câu 111 [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≥ D m ≤ Câu 112 [2] Biết M(0; 2), N(2; −2) điểm cực trị đồ thị hàm số y = ax3 + bx2 + cx + d Tính giá trị hàm số x = −2 A y(−2) = −18 B y(−2) = C y(−2) = 22 D y(−2) = Câu 113 [1] Phương trình log3 (1 − x) = có nghiệm A x = −5 B x = −2 C x = D x = −8 Câu 114 [2] Cho hàm số f (x) = x x Giá trị f (0) D f (0) = ln 10 ln 10 log(mx) Câu 115 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m < C m ≤ D m < ∨ m > A f (0) = B f (0) = 10 C f (0) = Câu 116 [3] Biết giá trị lớn hàm số y = ln2 x m đoạn [1; e3 ] M = n , n, m x e số tự nhiên Tính S = m2 + 2n3 A S = 32 B S = 135 C S = 22 D S = 24 Câu 117 Khối đa diện loại {3; 3} có số đỉnh A B C D Câu 118 Khối đa diện loại {3; 4} có tên gọi gì? A Khối lập phương B Khối tứ diện C Khối 12 mặt √ Câu 119 Thể tích khối lập phương có cạnh a √ √ 2a A 2a3 B C V = 2a3 D Khối bát diện √ D V = a3 Trang 9/10 Mã đề Câu 120 Một khối lăng trụ tam giác chia thành khối tứ diện tích nhau? A B C D [ = 60◦ , S O Câu 121 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ BC) √ với mặt đáy S O = a.√Khoảng cách từ O đến (S √ 2a 57 a 57 a 57 B C D a 57 A 17 19 19 x−3 x−2 Câu 122 [3-12212d] Số nghiệm phương trình − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D 1 Câu 123 [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + Tìm giá trị tham số m để hàm số nghịch biến R A (−∞; −2] ∪ [−1; +∞) B −2 < m < −1 C (−∞; −2) ∪ (−1; +∞) D −2 ≤ m ≤ −1 Câu 124 Tập hợp điểm mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 số ảo A Đường phân giác góc phần tư thứ B Hai đường phân giác y = x y = −x góc tọa độ C Trục thực D Trục ảo Câu 125 Tính lim A 7n2 − 2n3 + 3n3 + 2n2 + B Câu 126 Phần thực √ phần ảo số phức √ z= A Phần thực √2 − 1, phần ảo −√ C Phần thực − 1, phần ảo C D - √ √ − − 3i l √ √ B Phần thực 1√− 2, phần ảo −√ D Phần thực 2, phần ảo − Câu 127 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 128 Trong không gian cho hai điểm A, B cố định độ dài AB = Biết tập hợp điểm M cho MA = 3MB mặt cầu Khi bán kính mặt cầu bằng? A B C D 2 Câu 129 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Khơng có câu C Câu (I) sai sai D Câu (II) sai Trang 10/10 Mã đề Câu 130 Z Trong khẳng định sau, khẳng định sai? u (x) dx = log |u(x)| + C A u(x) B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số - - - - - - - - - - HẾT- - - - - - - - - - Trang 11/10 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B A C A C A D A 11 D D 10 D C 12 D 14 C 13 15 D 16 B 17 D 18 B 19 A 20 A 21 D 22 C 23 B 24 25 B 26 A 27 B 28 A 29 B 30 D 32 D 31 33 D 34 B 35 37 D B B 36 B 38 C B 39 D 40 41 D 42 D 44 D 43 B 45 D 46 47 A 48 49 C 50 51 C 52 A D 53 55 57 B 58 D D D B 60 62 A 63 A 64 A 67 B 56 61 A 65 C 54 A C 59 C C 66 D 68 A D C 69 C 70 71 C 72 73 C 74 75 D 78 D C B 80 B 81 A 83 C 76 B 77 79 B D 82 C 84 B D 86 A 87 88 A 89 90 A 91 92 A 93 D 95 D 97 D 99 D C 94 96 A 98 D 100 C D 103 104 D 105 107 B 108 D 111 112 A 113 D 117 D 120 C D B D C D 115 A 116 A 118 C 109 110 A 114 D 101 A 102 106 C B 119 A C 121 C 122 B 123 D 124 B 125 D 126 A 127 128 A 129 130 A C B

Ngày đăng: 04/04/2023, 07:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN