1. Trang chủ
  2. » Tất cả

Fundctrlsys chapter9

65 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 65
Dung lượng 342 KB

Nội dung

Microsoft PowerPoint FundCtrlSys Chapter9 ppt [Compatibility Mode] Lecture NotesLecture Notes Fundamentals of Control SystemsFundamentals of Control Systems Instructor Assoc Prof Dr Huynh Thai Hoang D[.]

Lecture Notes Fundamentals of Control Systems Instructor: Assoc Prof Dr Huynh Thai Hoang Department of Automatic Control Faculty of Electrical & Electronics Engineering Ho Chi Minh City University of Technology Email: hthoang@hcmut.edu.vn huynhthaihoang@yahoo.com Homepage: www4.hcmut.edu.vn/~hthoang/ www4 hcmut edu vn/ hthoang/ December 2013 © H T Hoang - www4.hcmut.edu.vn/~hthoang/ Chapter DESIGN OF DISCRETE CONTROL SYSTEMS December 2013 © H T Hoàng - www4.hcmut.edu.vn/~hthoang/ Content Introduction  Discrete lead – lag compensator and PID controller  Design discrete systems in the Z domain  Controllability and observability of discrete systems  Design D i state t t feedback f db k controller t ll using i pole l placement  Design state estimator  December 2013 © H T Hoàng - www4.hcmut.edu.vn/~hthoang/ Discrete lead lag compensators and PID controllers December 2013 © H T Hoàng - www4.hcmut.edu.vn/~hthoang/ Control schemes  Serial compensator R(z) + T GC(z) ZOH G(z) Y(z) H( ) H(z)  State feedback control r(k) + u(k) x (k  1)  Ad x (k )  Bd u (k ) x(t) Cd y(k) K December 2013 © H T Hoàng - www4.hcmut.edu.vn/~hthoang/ Transfer function of discrete difference term u(k) e(k) D  Differential term: dde(t ) u (t )  dt e( kT )  e[( k  1)T ]  Discrete difference: u ( kT )  T  E ( z )  z 1 E ( z ) U ( z)  T  Transfer function of the discrete difference term: z 1 GD ( z )  T z December 2013 © H T Hoàng - www4.hcmut.edu.vn/~hthoang/ Transfer function of discrete integral term e(t) I t Integral l u(t) t  Continuous integral:u(t )   e( )d  Di Discrete t integral: i t l u ( kT ) = u[( k - 1)T ] +  U ( z )  z 1U ( z )  kT ( k 1)T kT 0 ( k 1)T u (kT )   e( )d   e( )d   e( )d kT T e ( t ) d t = u [( k 1) T ] + (e[( k - 1)T ] + e(kT ) ò ( k -1) T  T 1 z E( z)  E( z)   TF of discrete integral term: GI ( z )  T z  z 1 December 2013 © H T Hồng - www4.hcmut.edu.vn/~hthoang/ Transfer function of discrete PID controller  C ti Continuous PID controller: t ll K GPID ( s )  K P   K D s s  Discrete PID controller: KIT z  KD z   GPID ( z )  K P  z 1 T z P or D z KD z  GPID ( z )  K P  K I T  z 1 T z P December 2013 I I D © H T Hoàng - www4.hcmut.edu.vn/~hthoang/ Digital PID controller r(k) (k) + e(k)  PID u(k) D/A G(s) y(k) A/D KIT z  KD z  U ( z) G PID ( z )   KP   E( z) z 1 T z u( k )  u( k  1)  K P [e( k )  e( k  1)] )  KIT KD [e( k )  e( k  1)]  [e( k )  2e( k  1)  e( k  2)] T December 2013 © H T Hoàng - www4.hcmut.edu.vn/~hthoang/ Digital PID control programming float PID_control(float PID control(float setpoint, setpoint float measure) { ek_2 = ek_1; ek_1 = ek; ek = setpoint – measure; uk_1 = uk; uk = uk_1 uk + Kp Kp*(ek (ek-ek_1) ek 1) + Ki Ki*T/2*(ek+ek T/2 (ek+ek_1) 1) +… + Kd/T*(ek – 2ek_1+ek_2); If uk > umax, uk = umax; If uk < umin, uk = umin; return(uk) } Note: Kp, Ki, Kd, uk, uk_1, ek, ek_1, ek_2 must be declared as gglobal variables;; uk_1,, ek_1 and ek_e must be initialized to be zero; umax and umin are constants December 2013 © H T Hồng - www4.hcmut.edu.vn/~hthoang/ 10

Ngày đăng: 04/04/2023, 00:05

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN