TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6,[.]
TỐN PDF LATEX TRẮC NGHIỆM ƠN THI MƠN TỐN THPT (Đề thi có 10 trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 14 năm B 12 năm C 11 năm D 10 năm Câu Khối đa diện loại {5; 3} có tên gọi gì? A Khối bát diện B Khối 12 mặt C Khối 20 mặt Câu [1] Cho a > 0, a , Giá trị biểu thức a √ A B 25 C D Khối tứ diện log √a D Câu [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a B a C D A 2a 2 Câu Biểu diễn hình học số phức z = + 8i điểm điểm sau đây? A A(4; 8) B A(−4; −8)( C A(−4; 8) D A(4; −8) Câu Khối đa diện thuộc loại {5; 3} có đỉnh, cạnh, mặt? A 20 đỉnh, 30 cạnh, 12 mặt B 12 đỉnh, 30 cạnh, 12 mặt C 20 đỉnh, 30 cạnh, 20 mặt D 12 đỉnh, 30 cạnh, 20 mặt !2x−1 !2−x 3 ≤ Câu Tập số x thỏa mãn 5 A [1; +∞) B (−∞; 1] C (+∞; −∞) D [3; +∞) x+1 Câu Tính lim x→−∞ 6x − 1 B C D A Câu [12221d] Tính tổng tất nghiệm phương trình x + = log2 (2 x + 3) − log2 (2020 − 21−x ) A 2020 B 13 C log2 2020 D log2 13 √ Câu 10 [2] Thiết diện qua trục hình nón trịn xoay tam giác có diện tích a2 Thể tích khối nón √ √ cho √ √ πa3 πa3 πa3 πa3 A V = B V = C V = D V = 6 Câu 11 Cho khối chóp có đáy n−giác Mệnh đề sau đúng? A Số cạnh khối chóp số mặt khối chóp B Số đỉnh khối chóp số mặt khối chóp C Số đỉnh khối chóp số cạnh khối chóp D Số cạnh, số đỉnh, số mặt khối chóp Câu 12 Gọi M, m giá trị lớn nhất, giá trị nhỏ hàm số y = (x2 − 3)e x đoạn [0; 2] Giá trị biểu thức P = (m2 − 4M)2019 A B C e2016 D 22016 Trang 1/10 Mã đề d = 300 Câu 13 Cho khối lăng trụ đứng ABC.A0 B0C có đáy ABC tam giác vng A BC = 2a, ABC Độ dài cạnh bên CC = 3a Thể tích V khối lăng trụ cho √ √ √ 3a3 a3 3 D V = A V = 3a B V = 6a C V = 2 Câu 14 [4-1244d] Trong tất số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − + 5i| = |z − i| Biết rằng, |z + − i| nhỏ Tính P = ab 13 23 A B − C − D 100 16 100 25 Câu 15 Khối đa diện loại {3; 4} có số cạnh A B 12 C 10 D Câu 16 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C a D Câu 17 [1] Hàm số đồng√biến khoảng (0; +∞)? A y = loga x a = − B y = log π4 x √ D y = log 14 x C y = log x Câu 18 Phần thực phần ảo số phức z = −3 + 4i A Phần thực 3, phần ảo −4 B Phần thực 3, phần ảo C Phần thực −3, phần ảo D Phần thực −3, phần ảo −4 Câu 19 Khối đa diện loại {3; 3} có tên gọi gì? A Khối bát diện B Khối 12 mặt C Khối tứ diện log 2x x2 − log 2x − ln 2x B y0 = C y0 = 3 x x ln 10 D Khối lập phương Câu 20 [3-1229d] Đạo hàm hàm số y = A y0 = 2x3 ln 10 D y0 = − ln 2x 2x3 ln 10 Câu 21 Cho hàm số y = |3 cos x − sin x + 8| với x ∈ [0; 2π] Gọi M, m giá trị lớn nhất, giá trị nhỏ √M + m √ hàm số Khi tổng √ A B C D 16 Câu 22 Dãy số !n có giới hạn bằng3 0? −2 n − 3n A un = B un = n+1 C un = n − 4n !n D un = Câu 23 Giá trị cực đại hàm số y = x3 − 3x + A B −1 C D Câu 24 [1-c] Giá trị biểu thức log2 36 − log2 144 A −4 B −2 C D Câu 25 [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≥ C m > D m ≤ A m < 4 4 Câu 26 Tập xác định hàm số f (x) = −x3 + 3x2 − A [−1; 2) B (−∞; +∞) C [1; 2] D (1; 2) Câu 27 √ Thể tích khối lăng√trụ tam giác có cạnh là: 3 A B C 4 √ D 12 Trang 2/10 Mã đề Câu 28 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ √ √ (A C D) √ a a 2a B a C D A 2 Câu 29 [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% tháng Biết khơng rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn lẫn lãi) gần với số tiền đây, khoảng thời gian người không rút tiền lãi suất không thay đổi? A 102.016.000 B 102.016.000 C 102.423.000 D 102.424.000 Câu 30 [4-1242d] Trong tất số phức z thỏa mãn |z − + 2i| = |z + − 4i| Tìm giá trị nhỏ mơđun z √ √ √ √ 13 B 26 C 13 D A 13 Câu 31 [1] Đạo hàm làm số y = log x 1 ln 10 A B y0 = C y0 = D y0 = 10 ln x x ln 10 x x Câu 32 Cho hàm số y = −x3 + 3x2 − Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; 2) B Hàm số nghịch biến khoảng (0; 2) C Hàm số đồng biến khoảng (0; +∞) D Hàm số đồng biến khoảng (0; 2) Câu 33 Thập nhị diện (12 mặt đều) thuộc loại A {3; 4} B {5; 3} C {4; 3} D {3; 3} Câu 34 [2-c] Giá trị lớn hàm số y = xe−2x đoạn [1; 2] 1 A B C 2e e e D √ e Câu 35 Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C D0 , biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4) Tìm tọa độ đỉnh A0 A A0 (−3; −3; 3) B A0 (−3; 3; 1) C A0 (−3; −3; −3) D A0 (−3; 3; 3) x−1 có đồ thị (C) Gọi I giao điểm hai tiệm cận (C) Xét x+2 tam giác √ ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài √ B C D A 2 Câu 36 [3-1214d] Cho hàm số y = x2 Câu 37 Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x đoạn [−1; 1] Khi e 1 B M = e, m = C M = , m = D M = e, m = A M = e, m = e e Câu 38 Hàm số y = −x3 + 3x2 − đồng biến khoảng đây? A (2; +∞) B (−∞; 1) C (0; 2) Câu 39 [1] Tính lim A 1 − 2n bằng? 3n + 1 B C D R D − Câu 40 Cho hàm số y = x3 − 3x2 − Mệnh đề sau đúng? A Hàm số đồng biến khoảng (1; 2) B Hàm số nghịch biến khoảng (−∞; 0) C Hàm số nghịch biến khoảng (1; +∞) D Hàm số nghịch biến khoảng (0; 1) Câu 41 [1] Tập xác định hàm số y = x +x−2 A D = [2; 1] B D = R C D = (−2; 1) D D = R \ {1; 2} Trang 3/10 Mã đề √ Câu 42 [1] Cho a > 0, a , Giá trị biểu thức loga a C A −3 B Câu 43 Tìm m để hàm số y = x3 − 3mx2 + 3m2 có điểm cực trị A m , B m < C m = D − D m > Câu 44 Mỗi đỉnh hình đa diện đỉnh chung A Năm cạnh B Hai cạnh C Ba cạnh D Bốn cạnh √ √ Câu 45 Phần thực√và phần ảo số √ phức z = − − 3i l √ √ A Phần thực √2, phần ảo − √ B Phần thực 1√− 2, phần ảo −√ C Phần thực − 1, phần ảo − D Phần thực − 1, phần ảo Câu 46 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m > C m < D m ≤ Câu 47 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e − B xy = −e − C xy0 = ey + D xy0 = −ey + Câu 48 [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x [0; 1] 2√ C m = ±1 D m = ± A m = ±3 B m = ± Câu 49 Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ ABC.A0 B0C √ √ a3 a3 a3 B a C D A π π Câu 50 Cho hàm số y = sin x − sin3 x Giá trị lớn hàm số khoảng − ; 2 A −1 B C D Câu 51 Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim f (x) = f (a) x→a x→a C lim+ f (x) = lim− f (x) = +∞ x→a x→a x→a D f (x) có giới hạn hữu hạn x → a Câu 52 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b C D A B 2 Câu 53 Khối đa diện thuộc loại {3; 3} có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Câu 54 [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) D 2e A B 2e + C e a Câu 55 [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = + , với a, b ∈ Z Giá trị a + b b ln A B C D Câu 56 [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn tháng, lãi suất 2% quý Sau tháng, người gửi thêm 100 triệu đồng với kỳ hạn lãi suất trước Tổng số tiền người nhận sau năm gửi tiền vào ngân hàng gần kết sau đây? Biết suốt thời gian gửi tiền lãi suất ngân hàng khơng thay đổi người khơng rút tiền A 212 triệu B 216 triệu C 210 triệu D 220 triệu Trang 4/10 Mã đề Câu 57 Tính √ √ mơ đun số phức z√4biết (1 + 2i)z = + 4i B |z| = C |z| = D |z| = A |z| = Z Câu 58 Cho xe2x dx = ae2 + b, a, b số hữu tỷ Tính a + b Câu 59 Phát biểu sau sai? A lim k = n C lim qn = (|q| > 1) A B C D = n D lim un = c (un = c số) B lim Câu 60 [4-1246d] Trong tất số phức z thỏa mãn |z√− i| = Tìm giá trị lớn √ |z| A B C D x = + 3t Câu 61 [1232h] Trong không gian Oxyz, cho đường thẳng d : y = + 4t Gọi ∆ đường thẳng qua z = điểm A(1; 1; 1) có véctơ phương ~u = (1; −2; 2) Đường phân giác góc nhọn tạo d ∆ có phương trình x = + 7t x = −1 + 2t x = + 3t x = −1 + 2t A B D y=1+t y = −10 + 11t C y = + 4t y = −10 + 11t z = −6 − 5t z = + 5t z = − 5t z = − 5t Câu 62 [3-12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D Câu 63 Cho hai đường thẳng phân biệt d d0 đồng phẳng Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có hai B Khơng có C Có hai D Có Câu 64 [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc mơn Tốn Mơn thi hình thức trắc nghiệm 50 câu, câu có phương án trả lời, có phương án Mỗi câu trả lời cộng 0, điểm, câu trả lời sai bị trừ 0, điểm Bạn An học mơn Tốn nên định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt điểm mơn Tốn 40 20 20 10 C50 (3)10 C50 (3)30 C50 (3)20 C50 (3)40 B C D A 450 450 450 450 Câu 65 [1] Phương trình log3 (1 − x) = có nghiệm A x = −2 B x = C x = −5 D x = −8 log7 16 Câu 66 [1-c] Giá trị biểu thức log7 15 − log7 15 30 A B −2 C −4 D Câu 67 [2-1223d] Tổng nghiệm phương trình log3 (7 − x ) = − x A B C D Câu 68 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 69 [1] Giá trị biểu thức log √3 10 1 A −3 B C D − 3 Trang 5/10 Mã đề Câu 70 [4-1121h] Cho hình chóp S ABCD đáy ABCD hình vng, biết AB = a, ∠S AD = 90◦ tam giác S AB tam giác Gọi Dt đường thẳng qua D song song với S C Gọi I giao điểm Dt mặt phẳng (S AB) Thiết diện √ hình chóp S ABCD với √mặt phẳng (AIC) có diện tích √ 2 2 a a 11a a B C D A 16 32 Câu 71 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a S A ⊥ (ABCD) Mặt bên (S CD) hợp với √ đáy góc 60◦ Thể tích khối chóp S ABCD √ √ 3 √ a3 2a 3 a A C B a3 D 3 Câu 72 Một khối lăng trụ tam giác chia thành khối tứ diện tích nhau? A B C D x − 3x + Câu 73 Hàm số y = đạt cực đại x−2 A x = B x = C x = D x = Câu 74 Khối đa diện loại {4; 3} có số đỉnh A B 10 C D Câu 75 Cho hình chóp S ABCD có √ đáy ABCD hình chữ nhật AD = 2a, AB = a Gọi H trung điểm AD, biết S H ⊥ (ABCD), S A = a Thể tích khối chóp √ S ABCD √ 3 4a 2a 4a 2a3 A B C D 3 3 Câu 76 Tìm giá trị tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + nghịch biến khoảng (−∞; +∞) A [1; +∞) B [−1; 3] C [−3; 1] D (−∞; −3] x − 12x + 35 Câu 77 Tính lim x→5 25 − 5x 2 A B − C −∞ D +∞ 5 Câu 78 [2-c] Giá trị lớn hàm số y = x(2 − ln x) đoạn [2; 3] A −2 + ln B e C − ln D Câu 79 Một chất điểm chuyển động trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính qng đường chất điểm từ thời điểm t = 0(s) đến thời điểm t = 4(s) A 24 m B m C 16 m D 12 m Câu 80 Phát biểu sau sai? A lim k = với k > n C lim √ = n B lim un = c (Với un = c số) D lim qn = với |q| > x+2 Câu 81 Có giá trị nguyên tham số m để hàm số y = đồng biến khoảng x + 5m (−∞; −10)? A B Vô số C D Câu 82 Điểm cực đại đồ thị hàm số y = 2x3 − 3x2 − A (−1; −7) B (2; 2) C (1; −3) D (0; −2) Câu 83 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập " đây? ! " ! 5 A [3; 4) B (1; 2) C ;3 D 2; 2 √ ab Trang 6/10 Mã đề Câu 84 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a a 5a 8a B C D A 9 9 n−1 Câu 85 Tính lim n +2 A B C D Câu 86 Nhị thập diện (20 mặt đều) thuộc loại A {3; 4} B {5; 3} C {4; 3} D {3; 5} Câu 87 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R x Câu 88 √ Tính diện tích hình phẳng giới hạn đường y = xe , y = 0, x = 3 A B C D 2 Câu 89 Khối đa diện thuộc loại {3; 5} có đỉnh, cạnh, mặt? A 12 đỉnh, 30 cạnh, 12 mặt B 20 đỉnh, 30 cạnh, 20 mặt C 12 đỉnh, 30 cạnh, 20 mặt D 20 đỉnh, 30 cạnh, 12 mặt Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = −e − C xy0 = −ey + D xy0 = ey − Câu 90 [3-12217d] Cho hàm số y = ln A xy0 = ey + Câu 91 [2-c] Giá trị lớn M giá trị nhỏ m hàm số y = x2 − ln x [e−1 ; e] A M = e−2 + 2; m = B M = e2 − 2; m = e−2 + −2 C M = e + 1; m = D M = e−2 − 2; m = Câu 92 [2] Tìm m để giá trị lớn hàm số y = 2x3 + (m2√+ 1)2 x [0; 1] √ A m = ±1 B m = ±3 C m = ± D m = ± √ √ Câu 93 √ √ Tìm giá trị lớn hàm √ số y = x + + − x A B + C D Câu 94 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp đơi thể tích khối hộp tương ứng sẽ: A Tăng gấp lần B Tăng gấp đôi C Tăng gấp lần D Tăng gấp lần x − 2x2 + 3x − A (1; +∞) B (−∞; 3) C (1; 3) D (−∞; 1) (3; +∞) √ Câu 96 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 58 3a 3a 38 A B C D 29 29 29 29 Câu 95 Tìm tất khoảng đồng biến hàm số y = Trang 7/10 Mã đề mx − Câu 97 Tìm m để hàm số y = đạt giá trị lớn [−2; 6] x+m A 34 B 67 C 26 D 45 Câu 98 Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin 2x B −1 + sin x cos x C − sin 2x D + sin 2x Câu 99 Cho hàm số f (x) liên tục đoạn [0; 1] thỏa mãn f (x) = 6x f (x )− √ A −1 B C Câu 100 [2] Cho hàm số f (x) = x x Giá trị f (0) A f (0) = B f (0) = ln 10 C f (0) = ln 10 Z 3x + Tính f (x)dx D D f (0) = 10 Câu 101 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết khơng rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 50, triệu đồng B 70, 128 triệu đồng C 3, triệu đồng D 20, 128 triệu đồng Câu 102 Cho a số thực dương α, β số thực Mệnh đề sau sai? α aα A β = a β B aαβ = (aα )β C aα bα = (ab)α D aα+β = aα aβ a Câu 103 Cho hình chữ nhật ABCD, cạnh AB = 4, AD = Gọi M, N trung điểm cạnh AB CD Cho hình chữ nhật quay quanh MN ta hình trụ trịn xoay tích A 32π B 8π C 16π D V = 4π Câu 104 [3-12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Câu 105 [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% năm Ơng muốn hồn nợ ngân hàng theo cách: Sau tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ lần trả hết tiền nợ sau tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất ngân hàng không đổi thời gian ơng A hồn nợ 120.(1, 12)3 100.(1, 01)3 triệu B m = triệu A m = (1, 12)3 − (1, 01)3 100.1, 03 C m = triệu D m = triệu (1, 01) − Câu 106 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D Câu 107 Khối đa diện loại {4; 3} có số mặt A B 10 C 12 D [ = 60◦ , S O Câu 108 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S √ BC) √ √ 2a 57 a 57 a 57 A B a 57 C D 19 17 19 Câu 109 [2] Đạo hàm hàm số y = x ln x A y0 = + ln x B y0 = ln x − C y0 = − ln x D y0 = x + ln x Câu 110 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ Trang 8/10 Mã đề ! un B Nếu lim un = a < lim = > với n lim = −∞ ! un = +∞ C Nếu lim un = a > lim = lim ! un D Nếu lim un = a , lim = ±∞ lim = Câu 111 Xác định phần ảo số phức z = (2 + 3i)(2 − 3i) A B 13 C Không tồn D Câu 112 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Câu 113 Tập số x thỏa mãn log0,4 (x − 4) + ≥ A (4; 6, 5] B (4; +∞) C [6, 5; +∞) 2n − Câu 114 Tính lim 2n + 3n + A −∞ B C +∞ 2,4 Câu 115 [1-c] Giá trị biểu thức log0,1 10 A −7, B 0, D (−∞; 6, 5) D C 7, D 72 Câu 116 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z f (x)dx = f (x) D ! x3 −3mx2 +m Câu 117 [2] Tìm tất giá trị thực tham số m để hàm số f (x) = nghịch biến π khoảng (−∞; +∞) A m ∈ (0; +∞) B m ∈ R C m = D m , Câu 118 Nếu không sử dụng thêm điểm khác ngồi đỉnh hình lập phương chia hình lập phương thành A Năm tứ diện B Bốn tứ diện hình chóp tam giác C Một tứ diện bốn hình chóp tam giác D Năm hình chóp tam giác đều, khơng có tứ diện Câu 119 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B Cả ba câu sai C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Câu 120 Khối đa diện loại {5; 3} có số mặt A B 20 Câu 121 Các khẳngZđịnh sau sai? Z k f (x)dx = k A Z C C 30 Z D 12 f (x)dx, k số B f (x)dx = F(x) +C ⇒ !0 Z Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C D f (x)dx = f (x) Z f (u)dx = F(u) +C Trang 9/10 Mã đề Câu 122 [3] Biết giá trị lớn hàm số y = ln2 x m đoạn [1; e3 ] M = n , n, m x e số tự nhiên Tính S = m2 + 2n3 A S = 24 B S = 22 C S = 32 Câu 123 Khối chóp ngũ giác có số cạnh A 10 cạnh B 12 cạnh C 11 cạnh D S = 135 D cạnh [ = 60◦ , S A ⊥ (ABCD) Câu 124 Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a góc BAD Biết khoảng cách từ A đến cạnh √ S C a Thể tích khối √ √chóp S ABCD 3 √ a a a A a3 B C D 12 Câu 125 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C (I) (III) D Cả ba mệnh đề Câu 126 Cho hình chóp S ABC có đáy ABC tam giác cạnh a, biết S A ⊥ (ABC) (S BC) hợp với đáy (ABC) góc 60◦ Thể tích khối chóp S ABC √ √ √ a3 a3 a3 a3 B C D A 4 12 √ Câu 127 Cho chóp S ABCD có đáy ABCD hình vuông cạnh a Biết S A ⊥ (ABCD) S A = a Thể tích √ khối chóp S ABCD √ √ a3 a3 a3 B C D a3 A 12 Câu 128 Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm 7n2 − 2n3 + Câu 129 Tính lim 3n + 2n2 + A - B Câu 130 Giá trị lim(2x2 − 3x + 1) x→1 A B +∞ C D C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 10/10 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C B A A A D 10 A B 12 A D 13 15 C A 11 B 14 C D 16 B 17 C 18 C 19 C 20 C 21 D 22 A 23 D 24 B 25 D 26 B 27 B 29 D 28 D 30 D D 31 B 32 33 B 34 D 35 37 38 D 42 B B 49 D B 53 C 46 A C 47 A 48 C 50 C 52 B 54 A C 55 A 56 A B 59 61 D 44 45 57 C 40 43 A 51 D 36 B 39 41 B C 58 B 60 B 62 A B 64 63 A D 65 D 66 C 67 D 68 C 69 D 70 A 71 D 72 73 B B 74 A 75 A 76 77 A 78 C B 79 C 80 D 81 C 82 D 83 C 84 A 85 A 86 87 A 88 89 C D D D 92 93 D 94 95 D 96 C 101 100 D 108 A 109 A 110 112 B 113 A 114 B 115 A 116 A C D 120 122 D 117 C 119 C 121 C B 123 A D 124 C 111 C 118 B 105 B 107 A 126 A 130 B 102 A 106 A 128 C 98 A 99 104 B 90 91 97 A D B 125 B 127 B 129 A C