Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình hộp ABCD A′B′C′D′ có đáy ABCD là hìn[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 30a3 B 60a3 C 100a3 D 20a3 ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A bc > B ac < C ab < D ad > Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 Câu 4.√ Bất đẳng thức √ esau đúng? π A ( √3 + 1) > ( √ + 1) B 3π < 2π e π D 3−e > 2−e C ( − 1) < ( − 1) Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (0; 2) B m ∈ (−1; 2) C −1 < m < D m ≥ Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; 2; 0) C (0; −2; 0) D (0; 6; 0) −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa√độ Oxyz cho → −u | = −u | = → − → − C |→ D |→ A | u | = B | u | = Câu Số nghiệm phương trình + 5.3 − = A B C D Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = x4 + C y = x4 + 2x2 + D y = −x4 + x x Câu 10 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; 1; 2) C I(1; 1; 2) D I(0; −1; 2) √ Câu 11 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A ( ; +∞) B (0; 1) C (1; +∞) D (0; ) 4 Câu 12 Tìm giá trị cực đại yCD hàm số y = x − 12x + 20 A yCD = 52 B yCD = C yCD = −2 D yCD = 36 Câu 13 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A m < B < m < C m < D Không tồn m 3 R5 dx Câu 14 Biết = ln T Giá trị T là: 2x − 1 √ A T = B T = 81 C T = D T = Trang 1/5 Mã đề 001 Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 Câu 16 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 17 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −15 C m = 13 D m = −2 π x π π Câu 18 Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π ln π π ln π π ln π π ln π B F( ) = + C F( ) = + D F( ) = − A F( ) = − 4 4 4 −u (2; −2; 1), kết luận sau đúng? Câu 19 Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = B |→ C |→ D |→ A |→ Câu 20 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 20 (m) B S = 24 (m) C S = 12 (m) D S = 28 (m) Câu 21 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A 3π C 3π B D √ 3 Câu 22 Tính I = R1 √3 7x + 1dx 45 20 A I = B I = 28 Câu 23 Hàm số sau đồng biến R? A y = tan x C y = x4 + 3x2 + C I = 60 28 D I = 21 √ √ B y = x2 + x + − x2 − x + D y = x2 Câu 24 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; 21; 21) B C(8; ; 19) C C(6; −17; 21) D C(20; 15; 7) Câu 25 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường tròn C Đường parabol D Đường elip n e R ln x Câu 26 Tính tích phân I = dx, (n > 1) x 1 1 A I = B I = C I = n + D I = n n+1 n−1 √ Câu 27 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vng cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ a3 2a3 a3 A B C D a3 3 Trang 2/5 Mã đề 001 Câu 28 Tập xác định hàm số y = logπ (3 x − 3) là: A [1; +∞) B (3; +∞) C Đáp án khác D (1; +∞) √3 a2 b Câu 29 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A − B C D 3 Câu 30 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−∞; −4) ∪ (−1; +∞) B S = [−1; +∞) C S = (−1; +∞) D S = (−4; −1) Câu 31 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 32 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (1; −2; 7) B (4; −6; 8) C (−2; 3; 5) D (−2; 2; 6) Câu 33 Cho R4 f (x)dx = 10 −1 R4 f (x)dx = Tính f (x)dx −1 A −2 R1 B C D 18 Câu 34 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B m > −2 C −4 ≤ m ≤ −1 D m < Câu 35 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 36 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 27 25 29 23 A B C D 4 4 √ 2x − x2 + Câu 37 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 38 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B C 1 R3 R2 R3 1 R3 R2 R3 D |x2 − 2x|dx = (x2 − 2x)dx − R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = − (x2 − 2x)dx |x2 − 2x|dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 39 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (1; 5) C (−3; 0) D (−1; 1) Câu 40 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ cách hai đường√thẳng MN S C √ 3a 3a a 15 3a 30 A B C D 2 10 Trang 3/5 Mã đề 001 Câu 41 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n √ Câu 42 Tính đạo hàm hàm số y = log4 x2 − 1 x x A y′ = √ B y′ = C y′ = (x − 1) ln (x − 1)log4 e x2 − ln D y′ = 2(x2 x − 1) ln Câu 43 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng C 36080255 đồng B 36080251 đồng D 36080254 đồng Câu 44 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ D R = 14 A R = B R = C R = 15 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 10 31 21 11 17 B M( ; ; ) C M( ; ; ) D M( ; ; ) A M( ; ; ) 3 3 3 3 3 Câu 46 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 3x Câu 47 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = −2 B m = C Không tồn m D m = Câu 48 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −4 D −2 Câu 50 Chọn mệnh đề mệnh đề sau: A Nếu a < a x > ay ⇔ x < y B Nếu a > a x > ay ⇔ x < y C Nếu a > a x = ay ⇔ x = y D Nếu a > a x > ay ⇔ x > y Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001