1. Trang chủ
  2. » Tất cả

Đề ôn khảo sát chất lượng thptqg môn toán (713)

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 124,5 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để đường[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A −4 < m < C < m , B ∀m ∈ R + 2x x+1 D m < Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > B m ≥ e−2 C m > 2e D m > e2 Câu Số nghiệm phương trình x + 5.3 x − = A B C Câu Bất đẳng thức sau đúng? −e A 3√ > 2−e √ e π C ( − 1) < ( − 1) D π B 3√ < 2π √ π e D ( + 1) > ( + 1) Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 24 (m) B S = 28 (m) C S = 20 (m) D S = 12 (m) Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m ≤ C m ≥ D m > Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a 3a a 2a A B C √ D √ 5 Câu √Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh 2 A 2π l − R B π l2 − R2 C 2πRl D πRl √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a D A B C a Câu 10 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A B C D − 6 Câu 11 Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + (ln b)2 B ln(ab) = ln a ln b a ln a C ln(ab2 ) = ln a + ln b D ln( ) = b ln b √ sin 2x Câu 12 Giá trị lớn hàm số y = ( π) R bằng? √ A π B π C D log Câu 13 Cho a > a , Giá √ trị a A B √ a bằng? C D Trang 1/5 Mã đề 001 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x−1 y+2 z = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y − 2z = B (P) : x + y + 2z = C (P) : x − 2y − = D (P) : x − y + 2z = Câu 15 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số nghịch biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (1; +∞) D Hàm số đồng biến khoảng (−3; 1) Câu 16 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(1; 2; 0) C A(0; 0; 3) D A(0; 2; 3) Câu 17 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (−2; −3; −1) C M ′ (2; 3; 1) D M ′ (−2; 3; 1) Câu 18 √ Hình nón có bán kính đáy R, đường sinh l diện tích xung quanh nó√bằng B πRl C 2πRl D 2π l2 − R2 A π l2 − R2 Câu 19 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = + 2x x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? D < m , A ∀m ∈ R B −4 < m < C m < Câu 20 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số nghịch biến R C Hàm số nghịch biến (0; +∞) D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) x π π π Câu 21 Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = + C F( ) = + D F( ) = − 4 4 4 Câu 22 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 1; 0) B (0; −5; 0) C (0; 5; 0) D (0; 0; 5) Câu 23 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = +1− B y = −1+ ln ln 5 ln ln x x C y = − D y = + ln ln 5 ln Câu 24 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A 3π B 3π C D √ 3 Câu 25 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 2; 0) C (0; 6; 0) D (−2; 0; 0) Câu 26 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa A πa3 B 3πa3 C πa3 D Trang 2/5 Mã đề 001 Câu 27 Tập xác định hàm số y = logπ (3 x − 3) là: A (3; +∞) B [1; +∞) C (1; +∞) D Đáp án khác x −1 ≤ là: Câu 28 Tập nghiệm bất phương trình log4 (3 x − 1).log 16 4 A S = (−∞; 1] ∪ [2; +∞) B S = (0; 1] ∪ [2; +∞) C S = [1; 2] D S = (1; 2) Câu 29 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ mặt phẳng đáy Tính cơsin √ √ góc hai mặt phẳng (SAC) (SBC) bằng? A B C D 2 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D x Câu 31 Tìm tất giá trị tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch biến R A m < −3 B m ≤ −2 C m ≥ −8 D m ≤ √3 a2 b ) Câu 32 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( c A − B C D 3 (2 ln x + 3)3 Câu 33 Họ nguyên hàm hàm số f (x) = : x ln x + (2 ln x + 3) (2 ln x + 3)4 (2 ln x + 3)2 A + C B + C C + C D + C 8 Câu 34 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080253 đồng C 36080251 đồng D 36080255 đồng Câu 35 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = π R2 Câu 36 Biết sin 2xdx = ea Khi giá trị a là: A B C − ln D ln Câu 37 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π A B C 6π D 5 Câu 38 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ a 15 3a 3a 30 3a A B C D 2 10 Câu 39 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có   véc tơ phương u            x = + 2t  x = − 2t  x = −1 + 2t  x = + 2t     y = −2 + 3t y = −2 + 3t y = + 3t y = −2 − 3t A  B C D             z = + 5t  z = −4 − 5t  z = − 5t  z = − 5t Trang 3/5 Mã đề 001 Câu 40 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = C R = 15 D R = 14 3x Câu 41 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A Không tồn m B m = C m = −2 D m = √ Câu 42 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình với x ∈ (4; +∞) Câu 43 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B −4 C D −2 Câu 44 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 45 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 46 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080251 đồng C 36080253 đồng D 36080255 đồng Câu 47 Biết a, b ∈ Z cho A R B (x + 1)e2x dx = ( ax + b 2x )e + C Khi giá trị a + b là: C D Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 49 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 30 3a a 15 3a A B C D 10 2 Câu 50 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B C − ln D ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 03/04/2023, 09:16