Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình hộp ABCD A′B′C′D′ có đáy ABCD là hìn[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 20a3 C 100a3 D 30a3 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H1) B (H2) C (H3) D (H4) R1 √3 7x + 1dx Câu Tính I = 20 21 45 60 A I = B I = C I = D I = 28 28 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếux > thìy < −15 C Nếu < x < π y > − 4π2 D Nếu < x < y < −3 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số đồng biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến (0; +∞) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 2; 0) C (0; 6; 0) D (−2; 0; 0) Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = sin x 3x + C y = tan x D y = x−1 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 2π C 4π D π Câu 10 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 4m2 − m2 − 12 m2 − 12 A B C D 2m 2m m 2m Câu 11 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π A V = B V = C V = D V = 5 √ d = 1200 Gọi Câu 12 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt phẳng (A1 BK) √ a a a 15 A B C D a 15 3 Trang 1/5 Mã đề 001 Câu 13 Gọi S (t) diện tích hình phẳng giới hạn đường y = t(t > 0) Tìm lim S (t) t→+∞ A − ln 2 B − ln − C ln + ; y = 0; x = 0; x = (x + 1)(x + 2)2 D ln − √ Câu 14 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = √ a Tính góc SC mặt phẳng (ABC) A 300 B 450 C 600 D 1200 R Câu 15 Tính nguyên hàm cos 3xdx 1 B − sin 3x + C C −3 sin 3x + C D sin 3x + C A sin 3x + C 3 Câu 16 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D m R dx theo m? Câu 17 Cho số thực dươngm Tính I = x + 3x + m+2 m+1 m+2 2m + A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+1 m+2 2m + m+2 Câu 18 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; 21; 21) B C(20; 15; 7) C C(8; ; 19) D C(6; −17; 21) Câu 19 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 24 (m) B S = 20 (m) C S = 12 (m) D S = 28 (m) Câu 20 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; −5; 0) C (0; 0; 5) D (0; 1; 0) Câu 21 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + 2ty = + tz = − 4t B x = + 2ty = + tz = C x = + ty = + 2tz = D x = + 2ty = + tz = Câu 22 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ a b2 − 3a2 a2 3b2 − a2 B VS ABC = A VS ABC = √ 12 √ 12 3a b 3ab2 C VS ABC = D VS ABC = 12 12 p Câu 23 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếu < x < π y > − 4π2 Câu 24 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 C y = x − 2x + D y = x3 − 2x2 + 3x + Trang 2/5 Mã đề 001 Câu 25 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 360 B 450 C 600 D 300 Câu 26 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 2a2 b 4a2 b 4a2 b B √ C √ D √ A √ 3π 3π 2π 2π Câu 27 Đồ thị hình bên đồ thị hàm số nào? 2x + 2x − 2x + −2x + B y = C y = D y = A y = 1−x x+1 x−1 x+1 (2 ln x + 3)3 Câu 28 Họ nguyên hàm hàm số f (x) = : x ln x + (2 ln x + 3)2 (2 ln x + 3)4 (2 ln x + 3)4 A + C B + C C + C D + C 2 Câu 29 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ sin góc MN mặt phẳng (S BD) √ (ABCD) 60 Tính √ MN mặt phẳng 10 B C D A 5 Câu 30 Tìm tập hợp tất giá trị tham số m để hàm số y = x + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−∞; −4) ∪ (−1; +∞) B S = [−1; +∞) C S = (−1; +∞) D S = (−4; −1) Câu 31 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 x2 −3x ′ Câu 32 Cho hàm số y = Tính y ′ x2 −3x A y = (x − 3x)5 ln B y′ = (2x − 3)5 x −3x 2 C y′ = (2x − 3)5 x −3x ln D y′ = x −3x ln 2x − Câu 33 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ± B m = ±2 C m = ±1 D m = ±3 Câu 34 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 11 17 21 10 31 10 16 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 √ Câu 35 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = D y′ = √ 2(x − 1) ln (x − 1)log4 e (x − 1) ln x2 − ln Câu 36 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m > C m > m < − D m < −2 π R2 Câu 37 Biết sin 2xdx = ea Khi giá trị a là: Trang 3/5 Mã đề 001 A − ln B ln C Câu 38 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2a+b+c C P = 2abc D D P = 2a+2b+3c Câu 39 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n d Câu 40 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng √ (ABC) √ cách từ S đến mặt phẳng A a B 2a C a D a Câu 41 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 42 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc DB′ Tính giá trị cos α.√ √ hai đường thẳng AC √ 3 A B C D 3x Câu 43 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C Không tồn m D m = Câu 44 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 15 πa 17 πa2 17 πa 17 B C D A 4 Câu 45 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 46 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ 3a 3a 3a 30 a 15 B C D A 10 Câu 47 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A sin xdx = cos x + C B (2x + 1)2 dx = + C R R e2x C e2x dx = +C D x dx =5 x + C Câu 48 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối √ √ √ √ chóp S ABC 3 3 a a 15 a 15 a 15 A B C D 16 Câu 49 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a < a x > ay ⇔ x < y x y C Nếu a > a = a ⇔ x = y D Nếu a > a x > ay ⇔ x > y Trang 4/5 Mã đề 001 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = √ B R = C R = 14 D R = A R = 15 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001