Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có vô số đường tiệm[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = tan x B y = x−1 C y = x − 2x + 3x + D y = sin x Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B ln x > ln y C log x > log y Câu Cho hình phẳng (D) giới hạn đường y = thể tích V khối trịn xoay tạo thành? A V = B V = π a √ C V = Câu Số nghiệm phương trình x + 5.3 x − = A B C D log x > log y a x, y = x, x = quay quanh trục hồnh Tìm 10π D V = π D Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ a 2a 3a 5a A B C √ D √ 5 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → → − → − −u | = −u | = √3 A | u | = B | u | = C |→ D |→ Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B m ∈ (−1; 2) C m ∈ (0; 2) D −1 < m < Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (−2; −1; 2) C (−2; 1; 2) D (2; −1; 2) Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 2 (m ) B 3(m ) C (m ) D (m2 ) A 2x + 2017 Câu 10 Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 D Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = Câu 11 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị Trang 1/5 Mã đề 001 A B C √ x Câu 12 Tìm nghiệm phương trình x = ( 3) A x = B x = C x = −1 D D x = Câu 13 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 4π C 2π D 3π Câu 14 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−3; 1) B Hàm số đồng biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (1; +∞) D Hàm số nghịch biến khoảng (−∞; −3) Câu 15 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D √ d = 1200 Gọi Câu 16 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh CC1 , BB1 Tính khoảng √ phẳng (A1 BK) √ cách từ điểm I đến mặt √ a a 15 a B a 15 D A C 3 Câu 17 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = C m = −2 D m = −15 Câu 18 Cho a > 1; < x < y Bất đẳng thức sau đúng? A ln x > ln y B log x > log y C loga x > loga y D log x > log y a a Câu 19 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A 4πR3 B πR3 C πR3 D πR3 Câu 20 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số đồng biến R C Hàm số nghịch biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu 21 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; 3; 1) Câu 22 Tính I = R1 √3 7x + 1dx 45 A I = 28 B I = 60 28 C I = 21 D I = 20 Câu 23 Hình nón có bán kính đáy √ R, đường sinh l diện √ tích xung quanh 2 A 2πRl B 2π l − R C π l2 − R2 D πRl Câu 24 Bất đẳng thức sau đúng? −e A 3√ > 2−e √ π e C ( + 1) > ( + 1) 2m + ) m+2 Rm dx theo m? + 3x + m+2 m+1 B I = ln( ) C I = ln( ) m+1 m+2 Câu 25 Cho số thực dươngm Tính I = A I = ln( π B 3√ < 2π √ e π D ( − 1) < ( − 1) x2 D I = ln( m+2 ) 2m + Trang 2/5 Mã đề 001 Câu 26 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 33,2 B 11 C 2,075 D 8,9 Câu 27 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình √ 2 2 2 A (x + 1) + (y − 1) + (z − 2) = B (x + 1) + (y − 1) + (z − 2) = C (x − 1)2 + (y + 1)2 + (z + 2)2 = D (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 Câu 28 Tập nghiệm bất phương trình log4 (3 x − 1).log 3x − ≤ là: 16 4 B S = [1; 2] D S = (−∞; 1] ∪ [2; +∞) A S = (1; 2) C S = (0; 1] ∪ [2; +∞) Câu 29 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 B C D A 24 12 R4 R4 R1 Câu 30 Cho f (x)dx = 10 f (x)dx = Tính f (x)dx −1 −1 A B C 18 D −2 Câu 31 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 4a2 b 4a2 b 2a2 b A √ B √ C √ D √ 3π 3π 2π 2π Câu 32 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−4; −1) B S = (−∞; −4) ∪ (−1; +∞) C S = (−1; +∞) D S = [−1; +∞) Câu 33 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC đường sinh hình trụ (T ) Tính cạnh hình √ vng √ 3a 10 A 6a B C 3a D 3a d Câu 34 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) A a B a C 2a D a R ax + b 2x Câu 35 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 36 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B m < C m > −2 D −3 ≤ m ≤ Câu 37 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B R3 1 |x − 2x|dx = − 2 R2 (x − 2x)dx + R3 (x2 − 2x)dx Trang 3/5 Mã đề 001 C D R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx Câu 38 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a B C D A 2 Câu 39 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 A 6a B 9a C 4a D 3a3 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 40 Trong khơng gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (1; 14; 15) A 2→ B 2→ → − → − → − → C u + v = (2; 14; 14) D u + 3−v = (3; 14; 16) x2 + mx + đạt cực tiểu điểm x = Câu 41 Tìm tất giá trị tham số m để hàm số y = x+1 A m = B Khơng có m C m = −1 D m = Câu 42 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (1; 5) C (−1; 1) D (3; 5) Câu 43 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 √ Câu 44 Tính đạo hàm hàm số y = log4 x2 − 1 x x x A y′ = √ B y′ = C y′ = D y′ = (x − 1)log4 e 2(x − 1) ln (x − 1) ln x2 − ln Câu 45 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 |x2 − 2x|dx = (x2 − 2x)dx − R3 1 R3 R2 R3 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx |x2 − 2x|dx (x2 − 2x)dx x2 + mx + Câu 46 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A Không có m B m = C m = −1 D m = R ax + b 2x Câu 47 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Trang 4/5 Mã đề 001 Câu 49 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = + 2(ln a)2 B P = 2loga e C P = ln a D P = Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C D −4 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001