Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux = y = −3 C Nếu < x < y < −3 D Nếux > thìy < −15 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 1; 0) B (0; 0; 5) C (0; 5; 0) D (0; −5; 0) Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ a 5a 2a 3a C √ D B √ A 5 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+2 m+1 2m + m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+2 m+2 m+1 Câu Kết đúng? R R sin3 x 2 + C A sin x cos x = −cos x sin x + C B sin x cos x = − 3 R R sin x + C D sin2 x cos x = cos2 x sin x + C C sin2 x cos x = Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = + B y = − ln 5 ln ln x x C y = +1− D y = −1+ ln ln 5 ln ln Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD có chiều cao chiều√cao tứ diện √ √ tiếp √ π 3.a π 2.a2 2π 2.a2 A B π 3.a C D 3 Câu 10 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 A (m2 ) B (m2 ) C (m ) D 3(m2 ) Câu 11 Tập nghiệm bất phương trình log (x − 1) ≥ là: A [2; +∞) B (1; 2) C (−∞; 2] D (1; 2] Trang 1/5 Mã đề 001 Câu 12 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −3 B f (−1) = C f (−1) = −1 D f (−1) = −5 √ Câu 13 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; 1) B (1; +∞) C ( ; +∞) D (0; ) 4 Câu 14 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D x−1 y+2 z Câu 15 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vuông góc với d A (P) : x − y − 2z = B (P) : x − 2y − = C (P) : x + y + 2z = D (P) : x − y + 2z = Câu 16 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m > B m ≥ C m ≥ D m ≥ −1 Rm dx Câu 17 Cho số thực dươngm Tính I = theo m? x + 3x + m+2 2m + m+1 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+2 m+2 m+1 Câu 18 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x − B y = −1+ A y = ln ln 5 ln ln x x C y = +1− D y = + ln ln 5 ln Câu 19 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B ∀m ∈ R C −4 < m < D < m , Câu 20 Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B log x > log y C log x > log y D ln x > ln y a + 2x x+1 a x Câu 21 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = − C y = −1 D y = R R R R 2 Câu 22 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 4πR3 C πR3 D 2πR3 ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu 23 Cho hàm số y = cx + d A ac < B ab < C ad > D bc > p Câu 24 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếu < x < π y > − 4π D Nếux > thìy < −15 Câu 25 Kết đúng? R sin3 x A sin x cos x = − + C 3 R sin x C sin2 x cos x = + C B R sin2 x cos x = cos2 x sin x + C D R sin2 x cos x = −cos2 x sin x + C Trang 2/5 Mã đề 001 Câu 26 Tập xác định hàm số y = logπ (3 x − 3) là: A Đáp án khác B [1; +∞) C (1; +∞) D (3; +∞) Câu 27 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √h √ √ √ 2π − 3 2π − π− 3 A B C D 12 12 3x − x Câu 28 Tập nghiệm bất phương trình log4 (3 − 1).log ≤ là: 16 4 A S = (0; 1] ∪ [2; +∞) B S = (−∞; 1] ∪ [2; +∞) C S = [1; 2] D S = (1; 2) x −2x +3x+1 Mệnh đề đúng? Câu 29 Cho hàm số f (x) = e A Hàm số đồng biến khoảng (−∞; 1) (3; +∞) B Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) C Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) D Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) (2 ln x + 3)3 Câu 30 Họ nguyên hàm hàm số f (x) = : x (2 ln x + 3)2 ln x + (2 ln x + 3)4 A + C B + C C + C 8 D (2 ln x + 3)4 + C Câu 31 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5 20 5πa3 5 5π a B V = πa C V = D V = πa3 A V = 6 Câu 32 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 33 Xác định tập tất giá trị tham số m để phương trình 2x3 + x2 − 3x − có nghiệm phân biệt 19 19 A S = (−5; − ) ∪ ( ; 6) B S = (−2; − ) ∪ ( ; 6) 4 4 19 C S = (−3; −1) ∪ (1; 2) D S = (−2; − ) ∪ ( ; 7) 4 m = − 2 Câu 34 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−1; 1) C (1; 5) D (−3; 0) Câu 35 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C D −2 π R2 Câu 36 Biết sin 2xdx = ea Khi giá trị a là: A B − ln C ln D Trang 3/5 Mã đề 001 Câu 37 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ cách hai đường√thẳng MN S C √ 3a a 15 3a 3a 30 B C D A 10 2 Câu 38 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 3a3 B 4a3 C 9a3 D 6a3 Câu 39 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = cos x π Câu 40 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 3π 6π A B ln + C ln + D ln + 5 5 Câu 41 Hàm số y = x − 3x + có giá trị cực đại là: A −3 B C D Câu 42 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B R3 |x − 2x|dx = − C D R3 R2 (x − 2x)dx + R2 |x2 − 2x|dx = (x2 − 2x)dx + 1 R2 R3 (x2 − 2x)dx R3 R3 |x2 − 2x|dx = (x2 − 2x)dx − R3 (x2 − 2x)dx (x2 − 2x)dx x2 Câu 43 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 B C D A 32 64 128 Câu 44 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = x3 − 3x2 C y = −2x4 + 4x2 D y = −x4 + 2x2 Câu 45 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B m > −2 C −3 ≤ m ≤ D −4 ≤ m ≤ −1 Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = + 2t x = − 2t x = −1 + 2t y = −2 − 3t y = −2 + 3t y = −2 + 3t y = + 3t A B C D z = −4 − 5t z = − 5t z = − 5t z = + 5t Câu 47 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a < a x > ay ⇔ x < y x y C Nếu a > a > a ⇔ x > y D Nếu a > a x > ay ⇔ x < y √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = √ D y′ = (x − 1) ln (x − 1)log4 e 2(x − 1) ln x2 − ln Trang 4/5 Mã đề 001 √ 2x − x2 + Câu 49 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C π R2 Câu 50 Biết sin 2xdx = ea Khi giá trị a là: D A B − ln C D ln - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001