TRƯỜNG ĐẠI HỌC LẠC HỒNG CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM MINISTRY OF EDUCATION AND TRAINING STATE BANK OF VIETNAM BANKING UNIVERSITY OF HO CHI MINH CITY DO THI LAN DAI CAPITAL FOR SUSTAINABLE ECONOM[.]
MINISTRY OF EDUCATION AND TRAINING STATE BANK OF VIETNAM BANKING UNIVERSITY OF HO CHI MINH CITY DO THI LAN DAI CAPITAL FOR SUSTAINABLE ECONOMIC GROWTH: THE CASE FROM DONG NAI PROVINCE IN VIETNAM DISSERTATION IN FINANCE - BANKING HCMC, 09/2022 MINISTRY OF EDUCATION AND TRAINING STATE BANK OF VIETNAM BANKING UNIVERSITY OF HO CHI MINH CITY DO THI LAN DAI CAPITAL FOR SUSTAINABLE ECONOMIC GROWTH: THE CASE FROM DONG NAI PROVINCE IN VIETNAM DISSERTATION IN FINANCE - BANKING Major: Finance - Banking CODE: 34 02 01 Advisor: Assoc Prof Dr Hoang Thi Thanh Hang HCMC – 09/2022 i COMMITMENT The author guarantee that the dissertation “Capital for sustainable economic growth: the case from Dong Nai province in Vietnam” is the research Except for the references cited in this dissertation The author guarantee that the whole or a small part of this dissertation has never been published or used to obtain a degree elsewhere No other people’s products/studies have been used in this dissertation that has not been appropriately cited This dissertation has never been submitted to receive any degree at any university or other training institution HCMC, September 02, 2022 D Do Thi Lan Dai ii ACKNOWLEDGEMENT The author would like to sincerely thank the Banking University of Ho Chi Minh City administrators and teachers, especially the teachers directly teaching K22 Ph.D students who have enthusiastically taught, passed on experience, and supported the author while studying at the Banking University of Ho Chi Minh City The author would like to express his gratitude and respect to the science instructor, Assoc Prof Dr Hoang Thi Thanh Hang enthusiastically supported, encouraged, and instructed the author to implement and complete this dissertation The author also expressed gratitude to the Board of Directors and officers at enterprises in Dong Nai province, managers who participated in the author’s interviews and surveys The author also thanked family and friends for their help, creating favorable conditions for the author to complete the dissertation Although the author has made great efforts, the dissertation cannot avoid its shortcomings I hope to receive comments from my teachers and friends Sincerely! HCMC, September 02, 2022 Author Do Thi Lan Dai iii ABSTRACT In recent years, the mobilization and use of investment capital, especially foreign investment capital, have significantly affected the country’s speed and quality of economic growth and each locality Besides, Dong Nai has favorable conditions to develop the marine economy with the Southeast provinces These economic, demographic, and geographic factors help facilitate Dong Nai’s promotion of economic development However, Dong Nai still faces significant challenges in developing specific sectors and products with comparative advantages Attracting and effectively using investment capital is always a complex problem for locations still weak in infrastructure, financial sophistication, attractive policies, the efficiency of using capital sources, and many inadequacies when implementing investment projects Therefore, this study aims to identify factors affecting the investment capital attraction for sustainable economic growth The author tested Cronbach’s Alpha, confirmatory factor analysis (CFA), and structural equation model (SEM) Based on the research results, the author proposed policy implications for attracting investment capital for sustainable economic growth in Dong Nai province The study surveyed 1.000 managers related to enterprises with investment capital in Dong Nai province, but 939 samples were processed and answered 39 questions The data was collected from June 2020 to November 2020 Based on the things mentioned above, eight factors affect the investment capital attraction for sustainable economic growth in Dong Nai province Technology (Te); Working and living environment (Wle); infrastructure (In); investment costs (Ic); human resources (Hr); investment policies (Ip); regional connectivity (Rc); and public service quality (Psq) Besides The results are also scientific and important for Dong Nai province researchers and policymakers to apply research results to improve investment capital attraction based on high and low standardized coefficients Finally, the author proposed policy implications for attracting investment capital to improve Dong Nai province's sustainable economic growth: technology, Working and living environment, infrastructure, investment costs, human resources, investment policies, regional connectivity, and public service quality Keywords: Capital, sustainable, economic, growth, Dong Nai, Vietnam iv TÓM TẮT LUẬN ÁN Trong năm gần đây, việc huy động sử dụng vốn đầu tư, vốn đầu tư nước ngồi ảnh hưởng khơng nhỏ đến tốc độ chất lượng tăng trưởng kinh tế nước địa phương Bên cạnh đó, Đồng Nai có điều kiện thuận lợi để phát triển kinh tế với tỉnh Đông Nam Bộ Các yếu tố kinh tế, nhân học địa lý giúp tạo điều kiện cho Đồng Nai thúc đẩy phát triển kinh tế Tuy nhiên, Đồng Nai phải đối mặt với thách thức lớn việc phát triển ngành, sản phẩm cụ thể có lợi so sánh Thu hút sử dụng hiệu vốn đầu tư ln tốn phức tạp địa phương yếu sở hạ tầng, khó khăn tài chính, sách hấp dẫn, hiệu sử dụng nguồn vốn, nhiều bất cập triển khai dự án đầu tư Do đó, nghiên cứu nhằm xác định nhân tố ảnh hưởng đến việc thu hút vốn đầu tư để tăng trưởng kinh tế bền vững Tác giả kiểm định độ tin cậy thông qua hệ số Cronbach’s Alpha, phân tích nhân tố khẳng định (CFA), mơ hình cấu trúc tuyến tính (SEM) Trên sở kết nghiên cứu, tác giả đề xuất hàm ý sách thu hút vốn đầu tư để tăng trưởng kinh tế bền vững địa bàn tỉnh Đồng Nai Nghiên cứu khảo sát 1.000 cán quản lý liên quan đến doanh nghiệp có vốn đầu tư địa bàn tỉnh Đồng Nai, có 939 mẫu xử lý trả lời 39 câu hỏi Dữ liệu thu thập từ 6-11/2020 Dựa liệu trên, kết có yếu tố ảnh hưởng đến việc thu hút vốn đầu tư để tăng trưởng kinh tế bền vững tỉnh Đồng Nai Công nghệ (Te); Môi trường sống làm việc (Wle); sở hạ tầng (In); chi phí đầu tư (Ic); nguồn nhân lực (Hr); sách đầu tư (Ip); kết nối khu vực (Rc); chất lượng dịch vụ công (Psq) Kết mang tính khoa học quan trọng nhà nghiên cứu hoạch định sách tỉnh Đồng Nai việc ứng dụng kết nghiên cứu để nâng cao khả thu hút vốn đầu tư dựa hệ số chuẩn hóa cao thấp Cuối cùng, tác giả đề xuất hàm ý sách thu hút vốn đầu tư nhằm nâng cao tốc độ tăng trưởng kinh tế bền vững tỉnh Đồng Nai: công nghệ, Môi trường sống làm việc, sở hạ tầng, chi phí đầu tư, nguồn nhân lực, sách đầu tư, kết nối vùng chất lượng dịch vụ cơng Từ khóa: Vốn, bền vững, kinh tế, tăng trưởng, Đồng Nai, Việt Nam v CONTENTS Page Commitment Acknowledgment Summary of dissertation List of acronyms List of tables List of figures CHAPTER INTRODUCTION 1.1 Reason for study 1.2 Objectives of the study 1.2.1 General objective 1.2.2 Specific objective 1.3 Research questions 1.4 Scope and delimitation of the study 1.4.1 Scope and objective of the study 1.4.2 The time of study 1.5 Research methods 1.6 Scientific and practical significance of research 1.6.1 The scientific significance of research 1.6.2 The practical significance of research 1.7 Organization of the study CHAPTER 2: LITERATURE REVIEW AND RESEARCH MODEL 2.1 Theoretical framework 2.1.1 Economic growth 2.1.2 Sustainable economic growth 13 2.1.3 Capital and investment attraction for sustainable economic growth 17 2.1.4 The relationship between investment attraction 20 2.1.5 Factors affecting investment attraction 23 2.2 Review of related studies 31 2.2.1 Review of related studies in other countries 31 vi 2.2.2 Review of related study in Vietnam 37 2.3 The experiences in investment capital attracting 42 2.3.1 Asian countries 42 2.3.2 Vietnam 47 2.3.3 The lessons in investment capital attraction for Dong Nai 51 2.4 The gap in the studies 53 2.5 The scientific basis for building a research model 54 2.5.1 The scientific basis for building a research model 54 2.5.2 Research model and research hypothesis 55 Summary of chapter 59 CHAPTER RESEARCH METHODOLOGY 60 3.1 Research procedure 60 3.2 Qualitative research 63 3.2.1 Qualitative research results 63 3.2.2 Group discussion results 76 3.2.3 Questionnaire design 76 3.2.4 The results of the scale test through preliminary quantification 77 3.2.5 Exploratory Factor Analysis (EFA) 83 3.3 Quantitative research 86 3.3.1 Sample size and sampling techniques 86 3.3.2 Data collection instrument 87 3.3.3 Data analysis techniques 87 Summary of chapter 91 CHAPTER RESEARCH RESULTS 92 4.1 Overview of Dong Nai province 92 4.1.1 Geographical position 92 4.1.2 Topography 92 4.1.3 Land 93 4.1.4 Climate 94 4.1.5 Population 94 4.1.6 Infrastructure 94 vii 4.1.7 Traffic 95 4.1.8 Resources 95 4.1.9 Tourism 96 4.1.10 Status of attracting investment capital from 2019 to 2020 96 4.2 Research results 99 4.2.1 Descriptive statistics of the research sample 99 4.2.2 Cronbach alpha test of reliability 102 4.2.3 Exploratory factor analysis (EFA) and Confirmatory factor analysis 109 4.2.4 Testing of structural equation modeling (SEM) 113 4.2.5 Testing model by Bootstrap (N = 5.000) 118 4.2.6 Testing analysis of variance (ANOVA) 119 4.2.7 T-Test the means of two groups (T-test) 121 Summary of chapter 130 CHAPTER 5: CONCLUSIONS AND POLICY IMPLICATIONS 131 5.1 Conclusions 131 5.2 Policy implications 134 5.2.1 Technology 134 5.2.2 Regional connectivity 136 5.2.3 Public service quality 138 5.2.4 Investment costs 140 5.2.5 Human resources 142 5.2.6 Investment policies 144 5.2.7 Infrastructure 147 5.2.8 Working and living environment 149 5.3 Limitations and suggestions for further research 152 5.3.1 Limitations of the research 152 5.3.2 Suggestions for further research 152 Summary of chapter 152 REFERENCES i APPENDIX vii-xx viii LIST OF ACRONYMS No Code Contents ANOVA Analysis of variance CFA Confirmatory factor analysis EFA Exploratory factor analysis EU European Union FDI Foreign direct investment FL Factor loading GDP Gross Domestic Product GNI Gross National Income GNP Gross National Product 10 HCMC Ho Chi Minh City 11 HR Human resources 12 IC Investment costs 13 IMF International Monetary Fund 14 IN Infrastructure 15 IP Investment policies 16 KMO Kaiser - Meyer – Olkin 17 MAN Management capacity Organization for Economic Co-operation and 18 OECD Development 19 PSQ Public service quality 20 RC Regional connectivity 21 SDM Spatial Durbin Model 22 SEM structural equation modeling 23 Sig Significant 24 SPSS Statistic Package for Social Sciences 25 TE Technology 26 WLE Working and living environment lii 10 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24 e25 e26 e27 e28 e29 e30 e31 e32 e33 e34 e35 e36 e37 e38 e39 Estimate 687 755 309 110 101 086 086 134 161 243 170 249 104 218 233 195 304 094 167 206 192 170 225 167 178 034 211 108 196 228 238 483 522 235 313 236 690 168 199 354 110 S.E .080 046 019 016 020 015 036 035 031 033 013 017 012 015 013 028 030 034 028 039 046 047 044 012 016 014 013 036 035 024 023 046 040 091 087 070 078 090 020 039 019 C.R 8.555 16.229 16.075 7.029 5.055 5.594 2.397 3.872 5.145 7.424 13.598 14.805 8.505 14.112 18.499 7.025 10.211 2.776 5.957 5.290 4.197 3.639 5.167 13.415 11.255 2.466 15.956 2.956 5.553 9.506 10.491 10.553 13.200 2.581 3.590 3.386 8.833 1.863 10.075 9.133 5.794 P *** *** *** *** *** *** 017 *** *** *** *** *** *** *** *** *** *** 006 *** *** *** *** *** *** *** 014 *** 003 *** *** *** *** *** 010 *** *** *** 062 *** *** *** Label liii Model Fit Summary CMIN Model Default model Saturated model Independence model NPAR 152 780 39 CMIN 2753.498 000 32331.079 DF 628 741 P 000 CMIN/DF 4.385 000 43.632 RMR, GFI Model Default model Saturated model Independence model RMR 027 000 197 GFI 871 1.000 312 AGFI 840 PGFI 701 275 296 NFI Delta1 915 1.000 000 RFI rho1 900 IFI Delta2 933 1.000 000 TLI rho2 921 Baseline Comparisons Model Default model Saturated model Independence model 000 000 CFI 933 1.000 000 Parsimony-Adjusted Measures Model Default model Saturated model Independence model PRATIO 848 000 1.000 PNFI 775 000 000 PCFI 790 000 000 NCP Model Default model Saturated model Independence model NCP 2125.498 000 31590.079 LO 90 1966.695 000 31005.129 HI 90 2291.769 000 32181.356 FMIN Model Default model Saturated model Independence model FMIN 2.935 000 34.468 F0 2.266 000 33.678 LO 90 2.097 000 33.055 HI 90 2.443 000 34.308 RMSEA Model Default model Independence model RMSEA 060 213 LO 90 058 211 HI 90 062 215 PCLOSE 000 000 liv AIC Model Default model Saturated model Independence model AIC 3057.498 1560.000 32409.079 BCC 3071.039 1629.488 32412.554 BIC 3793.910 5338.956 32598.027 ECVI Model Default model Saturated model Independence model ECVI 3.260 1.663 34.551 LO 90 3.090 1.663 33.928 HI 90 3.437 1.663 35.182 MECVI 3.274 1.737 34.555 HOELTER Model Default model Independence model HOELTER 05 235 24 HOELTER 01 244 25 Scalar Estimates (Group number - Default model) Maximum Likelihood Estimates Regression Weights: (Group number - Default model) ICA ICA ICA ICA ICA ICA ICA ICA SEG Ip1 Ip2 Ip3 Ip4 In1 In2 In3 In4 In5 Psq1 Psq2 < < < < < < < < < < < < < < < < < < < < - IP IN PSQ WLE RC HR IC TE ICA IP IP IP IP IN IN IN IN IN PSQ PSQ Estimate 236 149 158 077 178 092 102 475 295 1.000 1.325 1.936 2.131 1.000 1.313 971 1.050 1.004 1.000 1.487 S.E .051 049 033 024 031 025 028 027 020 C.R 4.630 3.059 4.712 3.197 5.810 3.703 3.625 17.624 14.775 P *** 002 *** 001 *** *** *** *** *** 061 283 297 21.897 6.851 7.183 *** *** *** 062 054 056 056 21.297 17.923 18.666 17.795 *** *** *** *** 195 7.616 *** Label CAIC 3945.910 6118.956 32637.027 lv Psq3 Wle1 Wle2 Wle3 Wle4 Rc1 Rc2 Rc3 Rc4 Hr1 Hr2 Hr3 Hr4 Ic1 Ic2 Ic3 Ic4 Ica2 Ica3 Seg1 Seg2 Seg3 Seg4 Ica1 Te4 Te3 Te2 Te1 < < < < < < < < < < < < < < < < < < < < < < < < < < < < - PSQ WLE WLE WLE WLE RC RC RC RC HR HR HR HR IC IC IC IC ICA ICA SEG SEG SEG SEG ICA TE TE TE TE Estimate 1.856 1.000 918 857 961 1.000 735 573 944 1.000 935 805 900 1.000 950 979 1.111 1.094 994 1.000 1.390 975 1.377 1.000 1.000 945 939 965 S.E .308 C.R 6.026 P *** 021 034 035 43.170 25.258 27.266 *** *** *** 036 057 075 20.348 10.118 12.649 *** *** *** 025 056 061 37.923 14.436 14.778 *** *** *** 023 040 043 026 029 41.284 24.279 25.772 42.290 34.315 *** *** *** *** *** 059 053 059 23.697 18.488 23.227 *** *** *** 016 027 025 58.006 34.167 38.282 *** *** *** Label Standardized Regression Weights: (Group number - Default model) ICA ICA ICA ICA ICA ICA ICA ICA SEG Ip1 Ip2 Ip3 Ip4 In1 In2 In3 In4 < < < < < < < < < < < < < < < < < - IP IN PSQ WLE RC HR IC TE ICA IP IP IP IP IN IN IN IN Estimate 100 089 115 089 175 105 108 531 556 541 698 1.056 1.072 753 958 741 750 lvi In5 Psq1 Psq2 Psq3 Wle1 Wle2 Wle3 Wle4 Rc1 Rc2 Rc3 Rc4 Hr1 Hr2 Hr3 Hr4 Ic1 Ic2 Ic3 Ic4 Ica2 Ica3 Seg1 Seg2 Seg3 Seg4 Ica1 Te4 Te3 Te2 Te1 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < - IN PSQ PSQ PSQ WLE WLE WLE WLE RC RC RC RC HR HR HR HR IC IC IC IC ICA ICA SEG SEG SEG SEG ICA TE TE TE TE Estimate 686 653 944 1.097 987 889 867 941 942 629 483 870 963 899 815 866 895 839 903 955 940 834 681 900 664 866 885 961 924 869 920 Covariances: (Group number - Default model) IP IP IP IP IP IP IN IN IN IN IN PSQ PSQ PSQ < > < > < > < > < > < > < > < > < > < > < > < > < > < > IN PSQ WLE RC HR IC PSQ WLE RC HR IC WLE RC HR Estimate -.008 -.008 -.055 -.001 -.016 -.008 001 010 -.008 036 163 006 -.044 -.060 S.E .005 005 014 008 009 008 009 016 014 016 018 017 017 020 C.R -1.718 -1.584 -4.096 -.148 -1.786 -1.000 091 605 -.539 2.263 9.308 331 -2.586 -2.940 P 086 113 *** 883 074 317 928 545 590 024 *** 740 010 003 Label lvii PSQ WLE WLE WLE RC RC HR IP IN PSQ WLE RC HR IC e31 e27 e23 e19 e15 e11 e6 e43 e44 e45 e32 e30 e28 e26 e24 e22 e20 e18 e14 e12 e10 e9 e7 e5 < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > IC RC HR IC HR IC IC TE TE TE TE TE TE TE e32 e28 e24 e20 e16 e12 e7 e44 e45 e46 e33 e31 e29 e27 e25 e23 e21 e19 e15 e13 e11 e10 e8 e6 Estimate 035 -.089 117 043 -.001 -.024 102 -.014 044 008 116 018 019 112 000 040 336 053 -.242 -.005 -.069 006 -.009 -.004 -.076 061 086 -.076 079 -.018 053 -.067 202 181 -.053 -.073 -.280 100 S.E .017 028 031 029 027 025 029 009 016 017 031 027 030 028 012 012 024 010 132 006 014 017 009 017 029 026 044 056 031 040 028 030 056 014 013 014 070 024 C.R 2.074 -3.230 3.759 1.501 -.029 -.943 3.557 -1.586 2.789 503 3.776 677 641 3.947 -.010 3.305 13.738 5.583 -1.841 -.759 -4.803 349 -.981 -.234 -2.596 2.321 1.963 -1.366 2.538 -.461 1.932 -2.212 3.604 12.745 -4.017 -5.382 -3.998 4.175 P 038 001 *** 133 977 346 *** 113 005 615 *** 499 522 *** 992 *** *** *** 066 448 *** 727 326 815 009 020 050 172 011 645 053 027 *** *** *** *** *** *** Label lviii Correlations: (Group number - Default model) IP IP IP IP IP IP IN IN IN IN IN PSQ PSQ PSQ PSQ WLE WLE WLE RC RC HR IP IN PSQ WLE RC HR IC e31 e27 e23 e19 e11 e43 e44 e45 e32 e30 e28 e26 e24 e22 e20 e18 e14 e12 e10 e9 e5 < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > IN PSQ WLE RC HR IC PSQ WLE RC HR IC WLE RC HR IC RC HR IC HR IC IC TE TE TE TE TE TE TE e32 e28 e24 e20 e12 e44 e45 e46 e33 e31 e29 e27 e25 e23 e21 e19 e15 e13 e11 e10 e6 Estimate -.045 -.038 -.159 -.004 -.048 -.026 003 020 -.018 075 368 009 -.088 -.103 065 -.111 125 050 -.001 -.032 120 -.042 094 015 127 023 022 135 -.001 167 524 238 -.022 061 -.047 -.021 -.605 256 315 -.648 210 -.083 326 -.905 902 734 -.606 -.844 372 lix Variances: (Group number - Default model) IP IN PSQ WLE RC HR IC TE e42 e41 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e18 e19 e20 e21 e22 e23 e24 e25 e26 e27 e28 e29 e30 e31 e32 e33 e34 e35 e36 e37 e38 e39 e40 e43 e44 e45 e46 Estimate 127 251 372 957 678 920 783 881 414 137 307 235 -.049 -.075 191 039 194 214 284 500 100 -.216 026 214 232 115 086 560 732 193 072 191 301 249 194 297 170 093 195 110 306 230 090 240 125 073 134 253 149 S.E .021 021 069 056 063 075 052 047 026 012 021 031 069 077 014 021 014 015 016 064 132 207 033 031 027 031 052 041 039 047 060 054 041 049 028 029 029 034 013 012 017 012 008 012 009 018 019 021 018 C.R 5.977 11.686 5.431 17.060 10.843 12.250 15.200 18.570 16.209 11.110 14.423 7.493 -.708 -.980 13.509 1.853 13.819 14.580 17.638 7.769 758 -1.044 784 6.923 8.739 3.731 1.660 13.647 18.930 4.120 1.202 3.510 7.300 5.043 6.949 10.414 5.896 2.762 15.209 9.435 17.910 19.579 10.706 19.770 13.445 4.023 7.206 12.201 8.204 P *** *** *** *** *** *** *** *** *** *** *** *** 479 327 *** 064 *** *** *** *** 448 296 433 *** *** *** 097 *** *** *** 229 *** *** *** *** *** *** 006 *** *** *** *** *** *** *** *** *** *** *** Label lx Model Fit Summary CMIN Model Default model Saturated model Independence model NPAR 139 780 39 CMIN 2979.759 000 32331.079 DF 641 741 P 000 CMIN/DF 4.649 000 43.632 RMR, GFI Model Default model Saturated model Independence model RMR 036 000 197 GFI 862 1.000 312 AGFI 832 PGFI 709 275 296 NFI Delta1 908 1.000 000 RFI rho1 893 IFI Delta2 926 1.000 000 TLI rho2 914 Baseline Comparisons Model Default model Saturated model Independence model 000 000 CFI 926 1.000 000 Parsimony-Adjusted Measures Model Default model Saturated model Independence model PRATIO 865 000 1.000 PNFI 785 000 000 PCFI 801 000 000 NCP Model Default model Saturated model Independence model NCP 2338.759 000 31590.079 LO 90 2172.784 000 31005.129 HI 90 2512.185 000 32181.356 FMIN Model Default model Saturated model Independence model FMIN 3.177 000 34.468 F0 2.493 000 33.678 LO 90 2.316 000 33.055 HI 90 2.678 000 34.308 RMSEA Model Default model Independence model RMSEA 062 213 LO 90 060 211 HI 90 065 215 PCLOSE 000 000 lxi AIC Model Default model Saturated model Independence model AIC 3257.759 1560.000 32409.079 BCC 3270.142 1629.488 32412.554 BIC 3931.189 5338.956 32598.027 ECVI Model Default model Saturated model Independence model ECVI 3.473 1.663 34.551 LO 90 3.296 1.663 33.928 HI 90 3.658 1.663 35.182 MECVI 3.486 1.737 34.555 HOELTER Model Default model Independence model HOELTER 05 221 24 HOELTER 01 229 25 Regression Weights: (Group number - Default model) Parameter ICA < ICA < ICA < ICA < ICA < ICA < ICA < ICA < SEG < Ip1 < Ip2 < Ip3 < Ip4 < In1 < In2 < In3 < In4 < In5 < Psq1 < Psq2 < Psq3 < Wle1 < Wle2 < Wle3 < - IP IN PSQ WLE RC HR IC TE ICA IP IP IP IP IN IN IN IN IN PSQ PSQ PSQ WLE WLE WLE SE 047 049 047 024 050 032 032 038 025 000 105 667 723 000 085 068 067 063 000 476 632 000 031 050 SE-SE 000 000 000 000 001 000 000 000 000 000 001 007 007 000 001 001 001 001 000 005 006 000 000 000 Mean 225 150 142 076 161 076 104 472 295 1.000 1.329 2.068 2.275 1.000 1.315 975 1.051 1.007 1.000 1.506 1.968 1.000 918 856 Bias -.011 001 -.016 -.001 -.017 -.016 002 -.002 -.001 000 004 132 143 000 002 004 001 003 000 018 113 000 000 -.001 SE-Bias 001 001 001 000 001 000 000 001 000 000 001 009 010 000 001 001 001 001 000 007 009 000 000 001 CAIC 4070.189 6118.956 32637.027 lxii Parameter Wle4 < Rc1 < Rc2 < Rc3 < Rc4 < Hr1 < Hr2 < Hr3 < Hr4 < Ic1 < Ic2 < Ic3 < Ic4 < Ica2 < Ica3 < Seg1 < Seg2 < Seg3 < Seg4 < Ica1 < Te4 < Te3 < Te2 < Te1 < - WLE RC RC RC RC HR HR HR HR IC IC IC IC ICA ICA SEG SEG SEG SEG ICA TE TE TE TE SE 050 000 039 149 243 000 033 217 241 000 027 057 060 033 045 000 095 057 095 000 000 023 029 023 SE-SE 000 000 000 001 002 000 000 002 002 000 000 001 001 000 000 000 001 001 001 000 000 000 000 000 Mean 960 1.000 735 552 909 1.000 937 777 869 1.000 950 976 1.108 1.096 998 1.000 1.393 976 1.379 1.000 1.000 945 939 964 Bias -.001 000 -.001 -.021 -.035 000 002 -.028 -.031 000 000 -.004 -.003 003 004 000 003 001 002 000 000 000 000 -.001 SE-Bias 001 000 001 002 003 000 000 003 003 000 000 001 001 000 001 000 001 001 001 000 000 000 000 000 lxiii Test of Homogeneity of Variances Levene Statistic ICA SEG df1 474 483 df2 4 Sig 934 934 755 748 ANOVA Sum of Squares Between Groups ICA SEG df Mean Square 6.511 1.628 Within Groups 757.883 934 811 Total Between Groups 764.394 2.485 938 621 Within Groups 302.018 934 323 Total 304.503 938 F Sig 2.006 092 1.921 105 Test of Homogeneity of Variances Levene Statistic ICA SEG 931 606 df1 df2 3 Sig 935 935 425 611 ANOVA Sum of Squares Between Groups ICA SEG df Mean Square 2.753 918 Within Groups 761.641 935 815 Total Between Groups 764.394 1.471 938 490 Within Groups 303.032 935 324 Total 304.503 938 F Sig 1.127 337 1.512 210 lxiv Test of Homogeneity of Variances Levene Statistic ICA SEG df1 771 604 df2 3 Sig 935 935 510 613 ANOVA Sum of Squares Between Groups ICA SEG df Mean Square 2.567 856 Within Groups 761.826 935 815 Total Between Groups 764.394 1.059 938 353 Within Groups 303.443 935 325 Total 304.503 938 F Sig 1.050 369 1.088 353 Test of Homogeneity of Variances Levene Statistic ICA SEG 2.328 1.427 df1 df2 4 Sig 934 934 055 223 ANOVA Sum of Squares Between Groups ICA SEG df Mean Square 2.232 558 Within Groups 762.161 934 816 Total Between Groups 764.394 2.104 938 526 Within Groups 302.399 934 324 Total 304.503 938 F Sig .684 603 1.624 166 lxv Group Statistics Gender ICA SEG N Mean Std Deviation Std Error Mean Male 420 3.3198 88571 04322 Female Male 519 420 3.3680 2.3970 91655 55591 04023 02713 Female 519 2.3892 58125 02551 Independent Samples Test Levene's Test for Equality of Variances F Sig t-test for Equality of Means t df Sig (2tailed) Mean Std Error Difference Difference 95% Confidence Interval of the Difference Lower ICA SEG Equal variances assumed Equal variances not assumed Equal variances assumed Equal variances not assumed 146 1.328 703 249 Upper -.813 937 416 -.04817 05926 -.16447 06812 -.816 908.18 415 -.04817 05905 -.16406 06771 209 937 835 00781 03741 -.06561 08124 210 911.34 834 00781 03724 -.06527 08090 lxvi Group Statistics Marital status ICA SEG N Mean Std Deviation Std Error Mean Single 388 3.3024 89959 04567 Married Single 551 388 3.3775 2.3943 90446 55984 03853 02842 Married 551 2.3916 57715 02459 Independent Samples Test Levene's Test for Equality of Variances F Sig t-test for Equality of Means t df Sig (2Mean Std Error tailed) Difference Difference 95% Confidence Interval of the Difference Lower ICA SEG Equal variances assumed Equal variances not assumed Equal variances assumed Equal variances not assumed 016 1.036 Upper 901 -1.256 937 210 -.07509 05981 -.19246 04228 -1.257 835.98 209 -.07509 05975 -.19237 04219 073 937 942 00277 03778 -.07137 07691 074 848.58 941 00277 03758 -.07099 07653 309