Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho −→u ([.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = √3 −u | = A |→ B |→ C |→ D |→ Câu Kết đúng? R R sin3 x A sin x cos x = + C B sin2 x cos x = −cos2 x sin x + C R R sin3 x + C D sin2 x cos x = cos2 x sin x + C C sin x cos x = − Câu Hàm số sau đồng biến R? A y = x2 B y = x√4 + 3x2 + √ C y = tan x D y = x2 + x + − x2 − x + Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a 5a 3a a A √ B C D √ 5 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 450 B 300 C 360 D 600 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (−2; 0; 0) C (0; 6; 0) D (0; −2; 0) Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ C m ∈ (0; 2) D m ≥ A m ∈ (−1; 2) B −1 < m < Rm dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + m+2 m+2 2m + m+1 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+1 m+2 m+2 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B ln − C ln + D − ln − 2 2 √ Câu 10 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Có tiệm cận ngang khơng có tiệm cận đứng C Có tiệm cận ngang tiệm cận đứng D Không có tiệm cận Câu 11 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Trang 1/5 Mã đề 001 Câu 12 Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab) = ln a ln b B ln(ab2 ) = ln a + (ln b)2 a ln a C ln(ab2 ) = ln a + ln b D ln( ) = b ln b Câu 13 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh 2a Tính thể tích khối nón √ √ huyền 2π.a3 π.a3 4π 2.a3 π 2.a B C D A 3 3 Câu 14 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 4m2 − m2 − 12 m2 − A B C D 2m 2m m 2m R Câu 15 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(2x − 1) + C Câu 16 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A −2 < m < B −2 ≤ m ≤ C m = D < m < ax + b Câu 17 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ac < B bc > C ab < D ad > √ x Câu 18 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H4) C (H1) D (H3) Câu 19 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 4πR3 C πR3 D 2πR3 Câu 20 Cho√ hai số thực a, bthỏa mãn sau sai? √ √ √ √5 a > b > Kết luận √5 2 a A a > b B a < b C e > eb D a− < b− Câu 21 Hàm số sau đồng biến R? A y = x√2 √ C y = x2 + x + − x2 − x + B y = tan x D y = x4 + 3x2 + Câu 22 Hàm số sau khơng có cực trị? A y = x4 + 3x2 + B y = x2 C y = cos x D y = x3 − 6x2 + 12x − Rm dx Câu 23 Cho số thực dươngm Tính I = theo m? x + 3x + m+2 m+1 2m + m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+2 m+2 m+1 Câu 24 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 300 B 600 C 360 D 450 Câu 25 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 6; 0) C (0; 2; 0) D (−2; 0; 0) √ x− x+2 có tất tiệm cận? Câu 26 Đồ thị hàm số y = x2 − A B C D Trang 2/5 Mã đề 001 Câu 27 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (−1; 1; 1) B (1; −1; 1) C (1; −2; −3) D (1; 1; 3) 1 + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) B M = C M = 3loga x 2loga x Câu 28 Rút gọn biểu thức M = A M = k(k + 1) loga x Câu 29 Tập nghiệm bất phương trình log4 (3 x − 1).log D M = 4k(k + 1) loga x 3x − ≤ là: 16 4 B S = (−∞; 1] ∪ [2; +∞) D S = [1; 2] A S = (0; 1] ∪ [2; +∞) C S = (1; 2) Câu 30 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D √3 a2 b Câu 31 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c C D − A B 3 x −2x +3x+1 Câu 32 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) B Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) C Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) D Hàm số đồng biến khoảng (−∞; 1) (3; +∞) Câu 33 Cho R4 f (x)dx = 10 −1 A R4 f (x)dx = Tính f (x)dx −1 B −2 R1 √ C 18 2x − x2 + có số đường tiệm cận đứng là: x2 − B C D Câu 34 Đồ thị hàm số y = A D Câu 35 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ góc đường thẳng S√B mp(S AC) Tính giá trị sin α √ S A = 2a Gọi α số đo 15 15 B C D A 10 Câu 36 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = + 2(ln a)2 B P = C P = ln a D P = 2loga e Câu 37 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + A log2 2250 = B log2 2250 = n n 2mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m Câu 38 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 39 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −2x4 + 4x2 B y = −x4 + 2x2 + C y = x3 − 3x2 D y = −x4 + 2x2 Trang 3/5 Mã đề 001 Câu 40 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080251 đồng C 36080254 đồng D 36080255 đồng Câu 41 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 3π A ln + B 6π ln + 5 C ln + cos x π F(− ) = π Khi giá trị sin x + cos x 6π D 6π Câu 42 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ B 6a3 C 3a3 D 4a3 A 9a3 Câu 43 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < − B m > C m < −2 D m > m < −1 Câu 44 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a2 Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 A B C D 16 Câu 45 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A B ln + 6π C cos x π F(− ) = π Khi giá trị sin x + cos x 3π ln + D 6π ln + 5 Câu 46 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 6π C 8π D 10π Câu 47 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B ax + b 2x )e + C Khi giá trị a + b là: C D Câu 48 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 Câu 49 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 50 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001