Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đâ[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga (x − 2)2 = 2loga (x − 2) B loga2 x = loga x C aloga x = x D loga x2 = 2loga x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B ∀m ∈ R C < m , + 2x x+1 D −4 < m < Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + ty = + 2tz = B x = + 2ty = + tz = − 4t C x = + 2ty = + tz = D x = + 2ty = + tz = Câu Hàm số sau khơng có cực trị? A y = cos x C y = x2 B y = x4 + 3x2 + D y = x3 − 6x2 + 12x − Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = (−∞; 2) C S = [ -ln3; +∞) D S = [ 0; +∞) Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m < C m ≤ D m > Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (−2; 1; 2) C (2; −1; −2) D (2; −1; 2) Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = C f (−1) = −5 D f (−1) = −3 Câu 10 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − m2 − 12 4m2 − A B C D m 2m 2m 2m Câu 11 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Trang 1/5 Mã đề 001 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng Câu 12 Cho hàm số y = Câu 13 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A Câu 14 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B ln − C − ln − D − ln A ln + 2 2 √ Câu 15 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; 1) B (1; +∞) C (0; ) D ( ; +∞) 4 Câu 16 Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab) = ln a ln b B ln( ) = b ln b C ln(ab2 ) = ln a + ln b D ln(ab2 ) = ln a + (ln b)2 Câu 17 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 C y = x − 2x + 3x + D y = x2 − 2x + Câu 18 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m ≥ C m > D m < p Câu 19 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếux = y = −3 → − −2; 1), kết luận sau đúng? Câu 20 Trong không gian với hệ tọa √ độ Oxyz cho u (2; → − → − −u | = −u | = C |→ D |→ A | u | = B | u | = Câu 21 Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B ln x > ln y C loga x > loga y D log x > log y a a Câu 22.√Hình nón có bán kính đáy R, đường sinh l diện tích xung quanh √ A 2π l2 − R2 B 2πRl C πRl D π l2 − R2 Câu 23 Hàm số sau đồng biến R? A y = tan √ x √ C y = x2 + x + − x2 − x + B y = x2 D y = x4 + 3x2 + Câu 24 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? A R = 29 B R = C R = D R = 21 Trang 2/5 Mã đề 001 Câu 25 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; −17; 21) B C(8; ; 19) C C(6; 21; 21) D C(20; 15; 7) m 3 Câu 26 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 A S = (−3; −1) ∪ (1; 2) B S = (−5; − ) ∪ ( ; 6) 4 19 19 D S = (−2; − ) ∪ ( ; 7) C S = (−2; − ) ∪ ( ; 6) 4 4 Câu 27 Họ nguyên hàm hàm số y = (x − 1)e x là: A (x − 2)e x + C B xe x−1 + C C xe x + C D (x − 1)e x + C Câu 28 Tứ diện OABC có OA = OB = OC = a đôi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 12 24 n Re ln x dx, (n > 1) Câu 29 Tính tích phân I = x 1 1 A I = B I = C I = n + D I = n−1 n n+1 Câu 30 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho√tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S B 125dm2 C 106, 25dm2 D 75dm2 A 50 5dm2 y−6 z−1 x−3 = = Câu 31 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vuông góc với d1 cắt d2 có phương trình là: x−1 y z−1 x y−1 z−1 A = = B = = −1 −3 −1 x y−1 z−1 x y−1 z−1 C = = D = = −1 −3 −3 Câu 32 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga = a loga a = B loga xn = log x , (x > 0, n , 0) an D loga x có nghĩa với ∀x ∈ R C loga (xy) = loga x.loga y Câu 33 Đồ thị hình bên đồ thị hàm số nào? 2x + −2x + 2x − A y = B y = C y = x+1 1−x x−1 Câu 34 Chọn mệnh đề mệnh đề sau: R3 R3 R2 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B R3 |x − 2x|dx = − C D R3 R2 (x − 2x)dx + R2 |x2 − 2x|dx = (x2 − 2x)dx + 1 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − R3 (x2 − 2x)dx R3 R3 2x + x+1 2 D y = (x2 − 2x)dx (x2 − 2x)dx Trang 3/5 Mã đề 001 Câu 35 Cho tứ diện DABC, tam giác ABC vuông B, DA vuông góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 3 2 √ Câu 36 Tính đạo hàm hàm số y = log4 x2 − 1 x x x B y′ = √ C y′ = D y′ = A y′ = 2 (x − 1)log4 e 2(x − 1) ln (x − 1) ln x − ln R ax + b 2x Câu 37 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 38 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ cách hai đường thẳng √ √ a 15 3a 3a 30 3a A B C D 10 Câu 39 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc hai đường thẳng AC √ DB′ Tính giá trị cos α.√ A B C D 2 Câu 40 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 41 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 42 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 6π C 8π D 10π Câu 43 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ a 15 3a 3a 3a 30 A B C D 10 2 Câu 44 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 45 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = + 2(ln a)2 C P = 2loga e D P = Câu 46 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A B C 6π D 5 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Trang 4/5 Mã đề 001 Câu 48 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (3; 5) C (−1; 1) D (1; 5) Câu 49 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 250π 500π 125π 400π A B C D 9 Câu 50 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 6a3 B 12a3 C 3a3 D 4a3 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001