Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây nhận trục tung là t[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = −x4 + 3x2 − C y = x − 2x + 3x + D y = x2 − 2x + Câu Kết đúng? R sin3 x A sin2 x cos x = + C R C sin2 x cos x = cos2 x sin x + C B R sin2 x cos x = −cos2 x sin x + C sin3 x + C D sin x cos x = − Câu Đồ thị hàm số sau có vô số đường tiệm cận đứng? A y = sin x B y = tan x 3x + C y = x − 2x + 3x + D y = x−1 Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 20 (m) B S = 28 (m) C S = 24 (m) D S = 12 (m) → − Câu Trong không gian với hệ tọa√độ Oxyz cho u (2; −2; 1), kết luận sau đúng? −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ R x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 B y = − C y = −1 D y = A y = R R R R 2 Câu Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh √ A 2πRl B π l2 − R2 C πRl D 2π l2 − R2 Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga2 x = loga x B aloga x = x C loga (x − 2)2 = 2loga (x − 2) D loga x2 = 2loga x log Câu √ Cho a > a , Giá trị a A B √ a bằng? C D √ d = 1200 Gọi Câu 10 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a 15 a a A B a 15 C D 3 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; 1; 2) C I(1; 1; 2) D I(0; −1; 2) √ Câu 12 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C D a ′′ Câu 13 Cho hàm số f (x) thỏa mãn f (x) = 12x + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = B f (−1) = −1 C f (−1) = −5 D f (−1) = −3 Trang 1/5 Mã đề 001 √ x Câu 14 Tìm nghiệm phương trình x = ( 3) A x = B x = −1 C x = √ sin 2x Câu 15 Giá trị lớn hàm số y = ( π) R bằng? √ A B C π D x = D π Câu 16 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể tích khối nón √ √ 2π.a3 π 2.a3 4π 2.a3 π.a3 B C D A 3 3 Câu 17 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 3a 5a 2a a A B √ C √ D 5 Câu 18 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = C R = 29 D R = 21 Câu 19 Hàm số sau đồng biến R? A y = x2 C y = x4 + 3x2 + B y = tan √ x √ D y = x2 + x + − x2 − x + √ Câu 20 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành π 10π A V = π B V = C V = D V = 3 √ ′ ′ ′ ′ Câu 21 Cho lăng trụ ABC.A B C có đáy a, AA = 3a Thể tích khối √ lăng trụ cho là: √ B a3 C 3a3 D 3a3 A 3a3 Câu 22 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≤ C m ≥ D m < ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu 23 Cho hàm số y = cx + d A ab < B ac < C ad > D bc > Câu 24 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = 13 C m = −15 D m = −2 Câu 25 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 360 B 300 C 600 D 450 √ Câu 26 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a a 10 A B a C D x−3 y−6 z−1 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 A = = B = = −3 −1 x−1 y z−1 x y−1 z−1 C = = D = = −1 −3 −1 −3 Trang 2/5 Mã đề 001 Câu 28 Tập xác định hàm số y = logπ (3 x − 3) là: A (3; +∞) B [1; +∞) C Đáp án khác D (1; +∞) Câu 29 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung quanh diện tích mặt √ đáy nhỏ nhất, S 2 D 75dm2 A 106, 25dm B 125dm C 50 5dm2 Câu 30 Họ nguyên hàm hàm số y = (x − 1)e x là: A (x − 1)e x + C B xe x + C C (x − 2)e x + C D xe x−1 + C Câu 31 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ B C D A Câu 32 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D m Câu 33 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 19 A S = (−2; − ) ∪ ( ; 6) B S = (−2; − ) ∪ ( ; 7) 4 4 19 C S = (−5; − ) ∪ ( ; 6) D S = (−3; −1) ∪ (1; 2) 4 Câu 34 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 9a3 C 4a3 D 6a3 A 3a3 √ Câu 35 Tính đạo hàm hàm số y = log4 x2 − x x x ′ ′ A y′ = B y′ = C y = D y = √ (x − 1)log4 e 2(x2 − 1) ln (x2 − 1) ln x2 − ln Câu 36 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = (x − 2x)dx + (x2 − 2x)dx B C 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − D R3 |x2 − 2x|dx = − (x2 − 2x)dx |x2 − 2x|dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 37 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a < a x > ay ⇔ x < y C Nếu a > a x = ay ⇔ x = y D Nếu a > a x > ay ⇔ x > y π R2 Câu 38 Biết sin 2xdx = ea Khi giá trị a là: A B − ln C ln D Câu 39 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 3 2 Trang 3/5 Mã đề 001 Câu 40 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 41 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = πRl + πR2 C S = πRl + 2πR2 D S = 2πRl + 2πR2 Câu 42 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D Câu 43 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 44 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 Câu 45 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a2 Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 15 a3 B C D A 16 Câu 47 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 3a3 B 4a3 C 9a3 D 6a3 Câu 48 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B −3 ≤ m ≤ C m < D m > −2 Câu 49 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln D y′ = x+cos3x ln Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 30 3a 3a A B C D 10 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001