Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho −→u ([.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa√độ Oxyz cho → −u | = −u | = −u | = −u | = C |→ D |→ A |→ B |→ Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 ′ ′ ′ ′ Câu Cho hình lập phương ABCD.A B C D Tính góc hai đường thẳng AC BC ′ A 450 B 600 C 360 D 300 Câu Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = x4 + 3x2 + B y = x2 D y = cos x , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A 3π B C √ D 3π 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B ln x > ln y C loga x > loga y a a D log x > log y π π π x F( ) = Tìm F( ) √ cos2 x π π ln π π ln C F( ) = − D F( ) = + 4 Câu Biết F(x) nguyên hàm hàm số f (x) = π π ln A F( ) = − 4 π π ln B F( ) = + 4 Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + 2m + m+2 m+1 m+2 ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( 2m + m+2 m+1 m+2 R Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = 2F(x) − + C D f (2x − 1)dx = F(2x − 1) + C Câu 10 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A −2 ≤ m ≤ B < m < C −2 < m < D m = Câu 11 Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln( ) = B ln(ab) = ln a ln b b ln b C ln(ab2 ) = ln a + (ln b)2 D ln(ab2 ) = ln a + ln b Câu 12 Biết R5 A T = dx = ln T Giá trị T là: 2x − √ B T = C T = 81 D T = Trang 1/5 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(3; 7; 4) B C(1; 5; 3) C C(−3; 1; 1) D C(5; 9; 5) Câu 14 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; 1; 2) C I(1; 1; 2) D I(0; −1; 2) √ d = 1200 Gọi Câu 15 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a 15 a A a 15 B C D 3 Câu 16 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x B C D A − 6 Câu 17 Tính I = R1 √3 7x + 1dx 21 A I = B I = 20 C I = 45 28 D I = 60 28 Câu 18 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = 13 C m = −15 D m = Câu 19 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường trịn B Đường parabol C Đường elip D Đường hypebol Câu 20 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 6πR3 C πR3 D 2πR3 Câu 21 √ Hình nón có bán kính đáy R, đường sinh l diện tích xung quanh nó√bằng A π l2 − R2 B 2πRl C πRl D 2π l2 − R2 Câu 22 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ B m ∈ (−1; 2) C m ∈ (0; 2) D m ≥ A −1 < m < √ x Câu 23 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H1) B (H3) C (H2) D (H4) Câu 24 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 450 B 300 C 600 D 360 Câu 25 Hàm số sau khơng có cực trị? A y = x4 + 3x2 + C y = x2 B y = x3 − 6x2 + 12x − D y = cos x Câu 26 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga x có nghĩa với ∀x ∈ R B loga = a loga a = C loga (xy) = loga x.loga y D loga xn = log x , (x > 0, n , 0) an Câu 27 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√tròn nội tiếp tam giác ABC √ √ √ A B C D Trang 2/5 Mã đề 001 Câu 28 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vng √ √ 3a 10 A 6a B 3a C D 3a Câu 29 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5π 20 5πa3 5 A V = a B V = πa C V = D V = πa 6 Câu 30 Người ta cần cắt tôn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 4a2 b 2a2 b 2a2 b 4a2 b B √ C √ D √ A √ 3π 3π 2π 2π Câu 31 Đồ thị hàm số sau có điểm cực trị: A y = x4 − 2x2 − B y = x4 + 2x2 − C y = 2x4 + 4x2 + D y = −x4 − 2x2 − m Câu 32 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 A S = (−3; −1) ∪ (1; 2) B S = (−5; − ) ∪ ( ; 6) 4 19 19 D S = (−2; − ) ∪ ( ; 6) C S = (−2; − ) ∪ ( ; 7) 4 4 Câu 33 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn ngồi 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 6π(dm3 ) B 24π(dm3 ) C 54π(dm3 ) D 12π(dm3 ) −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 34 Trong không gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ → − → − → − → C u + v = (3; 14; 16) D u + 3−v = (1; 13; 16) Câu 35 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < − B m < −2 C m > D m > m < −1 Câu 36 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n Câu 37 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 √ Câu 38 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = √ C y′ = D y′ = 2(x − 1) ln (x − 1) ln (x − 1)log4 e x2 − ln Trang 3/5 Mã đề 001 Câu 39 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C −2 D Câu 40 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = − 2t x = + 2t x = −1 + 2t y = −2 − 3t y = −2 + 3t y = −2 + 3t y = + 3t A B C D z = − 5t z = + 5t z = − 5t z = −4 − 5t Câu 41 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ √ √ √ tích khối trụ (T ) lớn 250π 400π 125π 500π B C D A 9 Câu 42 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a B C D A 3 Câu 43 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π A B C 6π D 5 Câu 44 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B C 1 R3 R2 |x2 − 2x|dx = (x2 − 2x)dx − R3 1 R3 R2 R3 D R3 |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx = − (x2 − 2x)dx (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 45 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2abc B P = 26abc C P = 2a+2b+3c D P = 2a+b+c Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = −1 + 2t x = + 2t x = − 2t x = + 2t y = −2 + 3t y = −2 + 3t y = + 3t y = −2 − 3t A B C D z = − 5t z = + 5t z = − 5t z = −4 − 5t √ Câu 47 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình vơ nghiệm d Câu 48 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) A a B a C 2a D a Trang 4/5 Mã đề 001 Câu 49 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B − ln C D ln Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ √ √ cách hai đường thẳng a 15 3a 30 3a 3a A B C D 10 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001