Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết quả nào đúng? A ∫ sin2 x cos x = sin3x 3[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Kết đúng? R R sin3 x A sin2 x cos x = + C B sin2 x cos x = −cos2 x sin x + C 3 R R sin x C sin2 x cos x = − + C D sin2 x cos x = cos2 x sin x + C √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H4) C (H3) D (H1) Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (2; −1; −2) C (−2; −1; 2) D (−2; 1; 2) Câu Hàm số sau khơng có cực trị? A y = cos x C y = x3 − 6x2 + 12x − B y = x4 + 3x2 + D y = x2 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 450 C 600 D 360 ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu Cho hàm số y = cx + d A ac < B bc > C ad > D ab < Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ -ln3; +∞) C S = (−∞; ln3) D S = [ 0; +∞) Câu Đồ thị hàm số sau có vô số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = sin x 3x + C y = D y = tan x x−1 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C D a Câu 10 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh 2a Tính thể tích khối nón √ huyền √ π 2.a π.a3 2π.a3 4π 2.a3 A B C D 3 3 Câu 11 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 52 B yCD = −2 C yCD = D yCD = 36 Câu 12 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số đồng biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (−∞; −3) C Hàm số nghịch biến khoảng (1; +∞) D Hàm số nghịch biến khoảng (−3; 1) Câu 13 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(1; 1; 2) C I(0; 1; 2) D I(0; 1; −2) Trang 1/5 Mã đề 001 Câu 14 Cho a > a , Giá trị alog A B √ a bằng? √ C D Câu 15 Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2] B (1; 2) C (−∞; 2] D [2; +∞) Câu 16 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 17 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; 2) C S = (−∞; ln3) D S = [ -ln3; +∞) x Câu 18 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = − C y = D y = −1 R R R R 2 Câu 19 Cho√ hai số thực a, bthỏa mãn a√> b > Kết luận √ √ √5 sau sai? a √5 2 − − A a > b B a eb ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu 20 Cho hàm số y = cx + d A ad > B ac < C bc > D ab < Câu 21 Hàm số sau cực trị? A y = cos x C y = x2 B y = x4 + 3x2 + D y = x3 − 6x2 + 12x − Câu 22 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến R D Hàm số nghịch biến (0; +∞) √ Câu 23 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành π 10π A V = B V = C V = D V = π 3 Câu 24 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = + B y = −1+ ln 5 ln ln x x C y = +1− D y = − ln ln 5 ln ln + 2x Câu 25 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A −4 < m < B < m , C m < D ∀m ∈ R (2 ln x + 3)3 Câu 26 Họ nguyên hàm hàm số f (x) = : x ln x + (2 ln x + 3)4 (2 ln x + 3)2 (2 ln x + 3)4 A + C B + C C + C D + C 2 Câu 27 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tôn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn Trang 2/5 Mã đề 001 hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 4a2 b 2a2 b 4a2 b C √ A √ B √ D √ 3π 3π 2π 2π Câu 28 Tập xác định hàm số y = logπ (3 x − 3) là: A [1; +∞) B (3; +∞) C Đáp án khác D (1; +∞) Câu 29 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 30 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 2,075 B 33,2 C 11 D 8,9 3x − ≤ là: Câu 31 Tập nghiệm bất phương trình log4 (3 − 1).log 16 4 A S = (1; 2) B S = (−∞; 1] ∪ [2; +∞) C S = [1; 2] D S = (0; 1] ∪ [2; +∞) x Câu 32 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 12 24 Câu 33 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 34 Hàm số hàm số sau đồng biến R 4x + B y = x4 + 3x2 A y = x+2 C y = −x3 − x2 − 5x D y = x3 + 3x2 + 6x − Câu 35 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = C m = m = −16 D m = Câu 36 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ 3a a 15 3a 30 3a A B C D 10 Câu 37 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 12a3 C 6a3 D 4a3 x2 Câu 38 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 128 32 64 Câu 39 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Trang 3/5 Mã đề 001 Câu 40 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a B C D A 3 Câu 41 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 21 10 31 11 17 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 42 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D √ Câu 43 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = √ D y′ = (x − 1)log4 e (x − 1) ln 2(x2 − 1) ln x2 − ln Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = + 2t x = −1 + 2t x = − 2t x = + 2t y = −2 + 3t y = + 3t y = −2 + 3t y = −2 − 3t A B C D z = − 5t z = −4 − 5t z = + 5t z = − 5t r 3x + Câu 45 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) B D = (−∞; −1] ∪ (1; +∞) C D = (−∞; 0) D D = (1; +∞) Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 11 17 21 10 31 10 16 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 → − → − Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho u = (2; 1; 3), v = (−1; 4; 3) Tìm tọa độ −u + 3→ −v véc tơ 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 14; 15) A 2→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 48 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 4a3 C 12a3 D 6a3 Câu 49 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > m < − C m > m < −1 D m > Câu 50 Hàm số hàm số sau đồng biến R 4x + A y = x4 + 3x2 B y = x+2 C y = −x3 − x2 − 5x D y = x3 + 3x2 + 6x − - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/5 Mã đề 001