Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có vô số đường tiệm[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = tan x 3x + C y = sin x D y = x−1 R1 √3 Câu Tính I = 7x + 1dx 60 20 21 45 B I = C I = D I = A I = 28 28 → − Câu Trong không gian với hệ tọa độ Oxyz cho u (2; −2; 1), kết luận sau đúng? −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ 0; +∞) C S = [ -ln3; +∞) D S = (−∞; ln3) Câu 5.√ Cho √hai số thực a, bthỏa√mãn a > b > Kết luận nào√sau sai? √ √ 2 − − B a eb A a > b p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếu < x < π y > − 4π2 C Nếux = y = −3 D Nếux > thìy < −15 Câu Hình nón có bán kính đáy √ tích xung quanh √ R, đường sinh l diện 2 C π l2 − R2 D 2πRl A πRl B 2π l − R Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(6; −17; 21) C C(6; 21; 21) D C(8; ; 19) √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A ( ; +∞) B (0; 1) C (1; +∞) D (0; ) 4 Câu 10 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x + x + mx − 1nằm bên phải trục tung 1 A m < B m < C < m < D Không tồn m 3 Câu 11 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = x4 + 2x2 + C y = x4 + D y = −x4 + 2x2 + Câu 12 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , −1 B m , C m , D m = Câu 13 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 4π C π D 2π Trang 1/5 Mã đề 001 Câu 14 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln − B − ln − C − ln D ln + 2 2 Câu 15 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − 12 m2 − A B C D 2m m 2m 2m Câu 16 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 17 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 300 B 360 C 450 D 600 R1 √3 Câu 18 Tính I = 7x + 1dx 60 45 20 B I = C I = A I = 28 28 Câu 19 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x2 − 2x + C y = x3 D y = −x4 + 3x2 − D I = 21 Câu 20 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B 4πR3 C πR3 D 6πR3 Câu 21 Cho < a , 1; < x , Đẳng thức sau sai? A loga (x − 2)2 = 2loga (x − 2) B aloga x = x C loga2 x = loga x D loga x2 = 2loga x Câu 22 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 450 C 360 D 600 Câu 23 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 24 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số đồng biến R C Hàm số nghịch biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) x Câu 25 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = −1 B y = C y = D y = − R R R R 2 Câu 26 Cho hình chóp S.ABC có đáy ABC tam giác vng cân với BA = BC = a, S A = a vuông góc với √ mặt phẳng đáy Tính cơsin √ góc hai mặt phẳng (SAC) (SBC) bằng? √ 2 A B C D 2 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi là: √ A 8π B 2π C 4π D 3π Trang 2/5 Mã đề 001 Câu 28 Cho R4 −1 A 18 f (x)dx = 10 R4 B −2 f (x)dx = Tính R1 f (x)dx −1 C D Câu 29 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D x2 + 2x Câu 30 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ B −2 C D A 15 Câu 31 Người ta cần cắt tôn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 4a2 b 2a2 b 4a2 b B √ D √ A √ C √ 3π 3π 2π 2π Câu 32 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ a 3a 13 3a 10 3a 13 B C D A 13 26 20 1 Câu 33 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > B m < C m > m < D m > Câu 34 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 12a3 B 3a3 C 4a3 D 6a3 Câu 35 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc DB′ Tính giá trị cos α √ hai đường thẳng AC √ A B C D Câu 36 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = 2 C (x − 1) + (y − 2) + (z − 4) = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 37 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 38 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −16 B m = C m = m = −10 D m = Câu 39 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Trang 3/5 Mã đề 001 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 40 Trong khơng gian với hệ trục tọa độ Oxyz cho → → − → − tơ u + v −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 14; 15) A 2→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 41 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B C −2 D −4 Câu 42 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = √ A R = 15 B R = C R = D R = 14 Câu 43 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 15 πa 17 πa2 17 A B C D 4 Câu 44 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A x dx =5 x + C B (2x + 1)2 dx = + C R R e2x +C D sin xdx = cos x + C C e2x dx = Câu 45 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 3 Câu 46 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π A B 6π C D 5 Câu 47 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080253 đồng C 36080255 đồng D 36080251 đồng Câu 48 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 49 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ góc đường thẳng S B mp(S AC) Tính giá√trị sin α √ S A = 2a Gọi α số đo 15 15 B C D A 10 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C −2 D - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/5 Mã đề 001