Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2;−[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 6; 0) B (0; −2; 0) C (−2; 0; 0) D (0; 2; 0) Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a a 5a 3a C √ A √ B D 5 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = C m = −2 D m = −15 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B log x > log y C ln x > ln y a D log x > log y a ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu Cho hàm số y = cx + d A ab < B ad > C ac < D bc > Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga (x − 2)2 = 2loga (x − 2) B aloga x = x D loga x2 = 2loga x C loga2 x = loga x Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 100a3 C 30a3 D 20a3 Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+1 m+2 m+2 2m + ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( m+2 m+2 m+1 2m + Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 10 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 11 Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + ln b B ln(ab2 ) = ln a + (ln b)2 ln a a C ln( ) = D ln(ab) = ln a ln b b ln b Câu 12 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [ ; 2] [22; +∞) B [22; +∞) C ( ; 2] [22; +∞) D ( ; +∞) 4 Trang 1/5 Mã đề 001 Câu 13 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh√huyền 2a Tính thể tích khối nón √ 4π 2.a3 2π.a3 π 2.a3 π.a3 A B C D 3 3 √ Câu 14 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a B C a D A 2 √ Câu 15 Đạo hàm hàm số y = log 3x − là: 6 A y′ = C y′ = B y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 16 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có√diện tích lớn bằng? √ √ 3 3 A (m ) B (m ) C 3(m2 ) D (m2 ) Câu 17 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m > e2 B m ≥ e−2 C m > D m > 2e π π x π F( ) = √ Tìm F( ) Câu 18 Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = − C F( ) = + D F( ) = + 4 4 4 Câu 19 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 − 2x2 + 3x + C y = x2 − 2x + D y = x3 Câu 20 Cho a > 1; < x < y Bất đẳng thức sau đúng? A ln x > ln y B log x > log y C log x > log y a √ D loga x > loga y a ′ ′ ′ ′ Câu 21 Cho lăng trụ ABC.A B C có đáy a, AA = 3a Thể tích khối lăng trụ cho là: √ √ A 3a3 B 3a3 C 3a3 D a3 √ Câu 22 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành π 10π B V = π C V = D V = A V = 3 Câu 23 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = +1− B y = + ln ln 5 ln x x C y = −1+ D y = − ln ln 5 ln ln Câu 24 Hàm số sau khơng có cực trị? A y = x4 + 3x2 + C y = cos x B y = x2 D y = x3 − 6x2 + 12x − đúng? x B Hàm số nghịch biến (0; +∞) D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu 25 Kết luận sau tính đơn điệu hàm số y = A Hàm số đồng biến R C Hàm số nghịch biến R Trang 2/5 Mã đề 001 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (−2; 3; 5) B (−2; 2; 6) C (4; −6; 8) D (1; −2; 7) Câu 27 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa3 3 3 D A πa B 3πa C πa 3 Câu 28 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ MN mặt phẳng (ABCD) 60 Tính √ sin góc MN và√mặt phẳng (S BD) 10 A B C D 5 Câu 29 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 3a 10 3a 13 a A B C D 13 20 26 Câu 30 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ h √ √ √ 2π − 2π − 3 π− 3 A B C D 12 12 Câu 31 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x 3π 3π π π A V = B V = C V = D V = 2 x Câu 32 Tập xác định hàm số y = logπ (3 − 3) là: A (1; +∞) B Đáp án khác C [1; +∞) D (3; +∞) Câu 33 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 48.621.980 đồng B 45.188.656 đồng C 46.538667 đồng D 43.091.358 đồng √ 2x − x2 + có số đường tiệm cận đứng là: Câu 34 Đồ thị hàm số y = x2 − A B C D Câu 35 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D d Câu 36 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C √ = S M = a Tính khoảng √ cách từ S đến mặt phẳng (ABC) A 2a B a C a D a x Câu 37 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 128 64 32 Câu 38 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a 15 a a 15 a 15 A B C D 16 Trang 3/5 Mã đề 001 Câu 39 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C D −2 √ Câu 40 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = √ D y′ = (x − 1) ln 2(x − 1) ln (x − 1)log4 e x2 − ln Câu 41 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080255 đồng C 36080251 đồng D 36080254 đồng Câu 42 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính M + m A B C D Câu 43 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo √ góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 B C D A 10 cos x π Câu 44 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 6π 3π A ln + B ln + C D ln + 5 5 Câu 45 Tìm tất giá trị tham số m để đồ thị hàm số y = −x + 3mx − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m < −2 C m > D m > m < − Câu 46 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 10π C 6π D 12π √ 2x − x2 + Câu 47 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D √ Câu 49 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình vơ nghiệm Câu 50 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B −3 ≤ m ≤ C m > −2 D −4 ≤ m ≤ −1 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/5 Mã đề 001