Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt p[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; −5; 0) C (0; 5; 0) D (0; 1; 0) Câu Kết đúng? R A sin2 x cos x = −cos2 x sin x + C R sin3 x + C C sin2 x cos x = sin3 x + C B R sin2 x cos x = − D R sin2 x cos x = cos2 x sin x + C x π π π F( ) = √ Tìm F( ) cos x π π ln π π ln C F( ) = + D F( ) = − 4 4 Câu Biết F(x) nguyên hàm hàm số f (x) = π π ln A F( ) = + π π ln B F( ) = − Rm dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + m+2 m+2 2m + m+1 ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( m+1 2m + m+2 m+2 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = − B y = + ln ln 5 ln x x +1− D y = −1+ C y = ln ln 5 ln ln Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m > C m ≤ D m ≥ p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếu < x < y < −3 C Nếux = y = −3 D Nếux > thìy < −15 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 20a3 C 60a3 D 30a3 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 2 A (m ) B 3(m ) C (m ) D (m ) 2x + 2017 Câu 10 Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng Trang 1/4 Mã đề 001 D Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = a3 Câu 11 Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 450 B 300 C 600 D 1350 Câu 12 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = Câu 13 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 4π C 2π D π Câu 14 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A m < B Không tồn m C < m < D m < 3 log √a Câu 15 Cho a > a , Giá trị a bằng? √ A B C D R Câu 16 Tính nguyên hàm cos 3xdx 1 C sin 3x + C D sin 3x + C A −3 sin 3x + C B − sin 3x + C 3 Câu 17 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = sin x B y = x3 − 2x2 + 3x + 3x + C y = tan x D y = x−1 Câu 18 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = (−∞; 2) C S = [ -ln3; +∞) D S = [ 0; +∞) Câu 19 thức sau đúng? √ Bất đẳng √ π e A ( + 1) > ( + 1) C 3π < 2π √ √ e π B ( − 1) < ( − 1) D 3−e > 2−e Câu 20 Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 4πR3 C 2πR3 D 6πR3 Câu 21 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ A R = 21 B R = C R = 29 D R = Câu 22 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C 4πR3 D πR3 Câu R23 Công thức sai? R A R sin x = − cos x + C B R cos x = sin x + C C e x = e x + C D a x = a x ln a + C Câu 24 Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B log x > log y C loga x > loga y a D ln x > ln y a Trang 2/4 Mã đề 001 Câu 25 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A < m , B ∀m ∈ R C m < D −4 < m < 3x − ≤ là: Câu 26 Tập nghiệm bất phương trình log4 (3 x − 1).log 16 4 A S = (0; 1] ∪ [2; +∞) B S = (1; 2) C S = [1; 2] D S = (−∞; 1] ∪ [2; +∞) + 2x x+1 Câu 27 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa3 3 3 A 3πa B πa C πa D Câu 28 Tập xác định hàm số y = logπ (3 x − 3) là: A Đáp án khác B (1; +∞) C (3; +∞) D [1; +∞) Câu 29 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 D A B −6 C Câu 30 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x 3π 3π π π A V = B V = C V = D V = Câu 31 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 − 4x B x3 − x4 + 2x C x3 + − 4x + D 2x3 − 4x4 A x3 + 4 (2 ln x + 3)3 : x (2 ln x + 3)4 (2 ln x + 3)4 B + C C + C Câu 32 Họ nguyên hàm hàm số f (x) = A ln x + + C D (2 ln x + 3)2 + C Câu 33 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 Câu 34 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = 2loga e C P = + 2(ln a)2 D P = Câu 35 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 250π 125π 500π 400π A B C D 9 √ Câu 36 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình với x ∈ (4; +∞) C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Câu 37 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 12a3 C 4a3 D 6a3 Trang 3/4 Mã đề 001 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 38 Trong không gian với hệ trục tọa độ Oxyz cho → → − → − tơ u + v −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Câu 39 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 6a3 C 9a3 D 3a3 A 4a3 Câu 40 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 41 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 25 29 27 A B C D 4 4 Câu 42 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = √ B R = C R = 15 D R = A R = 14 Câu 43 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a < a x > ay ⇔ x < y C Nếu a > a x > ay ⇔ x > y D Nếu a > a x = ay ⇔ x = y Câu 44 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 400π 125π 250π 500π A B C D 9 Câu 45 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2abc C P = 26abc D P = 2a+2b+3c r 3x + Câu 46 Tìm tập xác định D hàm số y = log2 x−1 A D = (1; +∞) B D = (−∞; 0) C D = (−1; 4) D D = (−∞; −1] ∪ (1; +∞) Câu 47 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 12π C 6π D 8π Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080255 đồng C 36080251 đồng D 36080253 đồng −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ → − → − −u + 3→ −v = (2; 14; 14) A u + v = (3; 14; 16) B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ d Câu 50 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng √ (ABC) √ cách từ S đến mặt phẳng A a B 2a C a D a - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001