1. Trang chủ
  2. » Tất cả

Chapter 3 2

19 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 1,62 MB

Nội dung

PT Nng lềng Chẽng 3: ẻng lác hc lu chòt Ph¶n 2: Ph˜Ïng trình n´ng l˜Ịng cho dịng l˛ t˜ng dịng th¸c Bài gi£ng cıa TS Nguyπn Qc fi nguyenquocy@hcmut.edu.vn Ngày tháng 10 n´m 2015 / 19 PT Nng lềng Nẻi dung cản nm Phẽng trỡnh nng l˜Ịng cho dịng l˛ t˜ng Ph˜Ïng trình n´ng l˜Ịng cho dịng th¸c Các ˘ng dˆng cÏ b£n cıa PT n´ng l˜Òng: bÏm, turbine, o v™n tËc, l˜u l˜Òng / 19 PT N´ng l˜Ịng cho dịng l˛ t˜ng: Ph˜Ïng trình Bernoulli Bernoulli equation Conservation of Energy for Inviscid Flows A cylindrical particle of inviscid fluid , A streamline with coordinates shown Newton’s 2nd law: m~a F external forces: pressure, and weight m dv dt dA p ds s mg cos ✓ / 19 PT N´ng l˜Òng dA ds v cho dịng l˛ t˜ng: Ph˜Ïng trình Bernoulli d–V v s, t dv dt for steady flows cos ✓ v v ds v dt dt t s dt t dv dv p dp : v , dt ds s ds v v s dz ds dv ds dp d– V ds mv dv dp d– V mg dz dp d– V mg mv mg dz ds Integrate along the streamline m v dv dz / 19 PT N´ng l˜Òng V2 for incompressible fluids m m dp d– V , d– V V2 pd– V per unit area /volume p ⇢gz ⇢gz p V2 ⇢ ⇢ V2 mgz const const.: mgz const per unit weight const : hydrostatic pressure : static pressure : cho dịng l˛ t˜ng: Ph˜Ïng trình Bernoulli dynamic pressure z p ⇢g V2 2g z H p ⇢g V2 2g H const : pressure head : velocity head : potential head : total head / 19 PT N´ng l˜Òng cho dịng l˛ t˜ng: Ph˜Ïng trình Bernoulli Be reminded: of a fluid particle z p ⇢g V2 2g H const or along a streamline, from Point to Point 2: z1 p1 ⇢g V12 2g z2 p2 ⇢g V22 2g Bernoulli equation only VALID for: Inviscid fluids Steady flows Along streamlines Incompressible flows / 19 PT N´ng l˜Ịng cho dịng l˛ t˜ng: Ph˜Ïng trình Bernoulli Bernoulli equation Across the streamline ˜Ìng dịng thØng: R Ÿng dˆng: »ng o áp z p const.: qui lu™t thu tænh / 19 PT N´ng l˜Ịng cho dịng l˛ t˜ng: Ph˜Ïng trình Bernoulli Bernoulli equation Example of stagnation points Stagnation point Stagnation streamline Stagnation point (a) V2 = (2) (b) V1 = V0 (1) z1 z1 p1 ⇢g V12 2g z2 p2 ⇢g V22 2g z2 , V2 0, p2 p1 ⇢V1 2 (1) Áp st d¯ng = Áp st tỉnh + p suòt ẻng / 19 PT Nng lềng cho dịng l˛ t˜ng: Ph˜Ïng trình Bernoulli Bernoulli equation Exchange of kinetic, Potential, and Pressure Energy A2 A1 v2 v1 p2 p1 / 19 PT N´ng l˜Ịng cho dịng l˛ t˜ng: Ph˜Ïng trình Bernoulli Bernoulli effect 10 / 19 PT N´ng l˜Ịng cho dịng l˛ t˜ng: Ph˜Ïng trình Bernoulli Application of Bernoulli Equation Ventury tube for measuring flow rate z1 V12 2g p1 Assume z1 p2 z2 V22 2g z2 : horizontally v2 v1 p1 p2 2g v1 Q v2 A2 A1 , C A2 v2 p1 p2 H A2 C A2 A1 2gH C :(emperical) coe due to energy loss 11 / 19 PT N´ng l˜Ịng cho dịng l˛ t˜ng: Ph˜Ïng trình Bernoulli Application of Bernoulli Equation Pitot tube for measuring flow velocity V1 = 100 mi/hr (2) (1) Pitot-static tube pA ⇢g vA Pitot’s 1st exp 2g pB some loss: vA vA 2g pA ⇢g pB ⇢g 2g pB pC ⇢g 2gH Cv 2gH 12 / 19 PT N´ng l˜Ịng cho dịng l˛ t˜ng: Ph˜Ïng trình Bernoulli Application of Bernoulli Equation Flow through a small hole VA zA for large tank, zB H VB 2gH due to some loss VB Cv 2gH due to contraction of the jet at exit: ac Cc a actual flow rate Q zA patm VA2 2g zB patm VB2 2g Cc aCv VB Q Cc Cv a 2gH Ca 2gH C: Coe of discharge 13 / 19 PT N´ng l˜Ịng cho dịng l˛ t˜ng: Ph˜Ïng trình Bernoulli Application of Bernoulli Equation Flow through a small hole Coe of contraction dj dh CC = 0.61 CC = 1.0 CC = A j /A h = (dj /dh)2 CC = 0.61 CC = 0.50 14 / 19 PT N´ng l˜Ịng cho dịng l˛ t˜ng: Ph˜Ïng trình Bernoulli Application of Bernoulli Equation Measuring water flow rate by WEIRs Consider a minute area b.dz as an orifice: v 2gz dQ C b.dz 2gz H Q Cb 2g zdz Cb 2g H 3 15 / 19 PT N´ng l˜Ịng cho dịng th¸c Energy Equation Energy Equation for Viscous Flows Bernoulli equation to be modified for real incompressible fluid: introducing a term to account energy loss, hloss : energy loss by a unit weight of fluid, due to: viscous friction, turbulent shear stress, local loss at valves, fittings, correcting velocity head for real velocity distribution on a wetted area flows through hydraulic machines: PUMPS, TURBINES 16 / 19 PT N´ng l˜Ịng cho dịng th¸c Kinetic energy correction factor Nonuniform distribution: m KE mg ⇢dA v t mv KE A ↵ ↵ V2 2g ⇢ v dA t ↵ ⇢V A t V : averaged velocity at the section, hence: ↵ A A v V dA 17 / 19 PT N´ng l˜Ịng cho dịng th¸c Modified energy equation for flows through PUMPS z1 p1 ↵1 V12 Hb 2g z2 p2 ↵2 V22 2g hloss Hp is the energy supplied to a unit weight of fluid, or Pump head Cơng st bÏm Nb QHb Nb Cơng st Îng cÏ N c ⌘b Outlet Pipe Pump Elbow Tee Valve b : Hiêu suòt bẽm (%) Inlet 18 / 19 PT N´ng l˜Ịng cho dịng th¸c Modified energy equation for flows through TURBINES Ht is the energy taken from a unit weight of fluid, or Turbine head z1 p1 ↵1 V12 Ht 2g z2 p2 ↵2 V22 2g hloss Cụng suòt turbine Nt Cụng suòt ẻng cẽ N QHt c Nt t t : Hiêu suòt turbine (%) 19 / 19

Ngày đăng: 02/04/2023, 11:39

w