Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Hàm số nào sau đây đồng biến trên R? A y = x4[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Hàm số sau đồng biến R? A y = x4 + 3x2 + C y = x2 √ √ B y = x2 + x + − x2 − x + D y = tan x Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(6; 21; 21) C C(6; −17; 21) D C(20; 15; 7) A C(8; ; 19) Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; ln3) C S = [ 0; +∞) D S = (−∞; 2) Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = −15 C m = −2 D m = Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số đồng biến R C Hàm số nghịch biến (0; +∞) D Hàm số nghịch biến R Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường hypebol C Đường tròn D Đường parabol Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (−2; 3; 1) C M ′ (2; −3; −1) D M ′ (−2; −3; −1) Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 2 2 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x − 2) + (y − 1) + (z + 1) = Câu 10 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(3; 7; 4) C C(5; 9; 5) D C(−3; 1; 1) Câu 11 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D 1 ; y = 0; x = 0; x = Câu 12 Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln + B ln − C − ln − D − ln 2 2 Trang 1/4 Mã đề 001 Câu 13 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = 36 C yCD = −2 D yCD = 52 Câu 14 √ Cho a > a , Giá trị a A B D log √a bằng? C √ x Câu 15 Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = R5 dx Câu 16 Biết = ln T Giá trị T là: 2x − A T = B T = C T = 81 D x = D T = √ Câu R17 Công thức sai? A R a x = a x ln a + C C sin x = − cos x + C R B R cos x = sin x + C D e x = e x + C √ ′ ′ ′ ′ Câu 18 Cho lăng trụ ABC.A B C có đáy a, AA = 3a Thể tích khối lăng trụ cho là: √ √ A 3a3 B 3a3 C 3a3 D a3 Câu 19 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = 13 C m = −15 D m = Câu 20 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (−2; 3; 1) C M ′ (−2; −3; −1) D M ′ (2; −3; −1) Câu 21 Hàm số sau khơng có cực trị? A y = x4 + 3x2 + C y = cos x B y = x3 − 6x2 + 12x − D y = x2 Câu 22 Số nghiệm phương trình x + 5.3 x − = A B C D Câu 23 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 Câu 24 Kết đúng? R A sin2 x cos x = −cos2 x sin x + C R C sin2 x cos x = cos2 x sin x + C sin3 x + C R sin3 x D sin x cos x = + C B R sin2 x cos x = − p Câu 25 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < π y > − 4π2 C Nếu < x < y < −3 D Nếux = y = −3 Câu 26 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa3 3 A πa B πa C D 3πa3 Câu 27 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga (xy) = loga x.loga y B loga xn = log x , (x > 0, n , 0) C loga x có nghĩa với ∀x ∈ R an D loga = a loga a = Trang 2/4 Mã đề 001 Câu 28 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 33,2 B 11 C 2,075 D 8,9 Câu 29 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 − x4 + 2x B x3 + − 4x C 2x3 − 4x4 D x3 + − 4x + 4 Câu 30 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 47m B 48m C 49m D 50m Câu 31 Đồ thị hình bên đồ thị hàm số nào? 2x + −2x + 2x + 2x − A y = B y = C y = D y = x+1 1−x x+1 x−1 Câu 32 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ (SAC) (SBC) bằng? √ mặt phẳng đáy Tính cơsin √ góc hai mặt phẳng B C D A 2 3 x −2x +3x+1 Câu 33 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số đồng biến khoảng (−∞; 1) (3; +∞) B Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) C Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) D Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) Câu 34 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = 2 2 C (x − 1) + (y − 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = d Câu 35 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng √ (ABC) √ cách từ S đến mặt phẳng A a B 2a C a D a Câu 36 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ πa2 17 πa2 15 πa2 17 πa2 17 A B C D 4 Câu 37 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc DB′ Tính giá trị cos α √ hai đường thẳng AC √ 3 A B C D Câu 38 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Câu 39 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 23 29 27 A B C D 4 4 Trang 3/4 Mã đề 001 Câu 40 Biết hàm F(x) nguyên hàm hàm f (x) = π cos x F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 3π A ln + B ln + C ln + 5 Câu 41 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D 6π D −3 Câu 42 Hàm số hàm số sau có đồ thị hình vẽ bên D y = −x4 + 2x2 A y = −x4 + 2x2 + B y = −2x4 + 4x2 C y = x3 − 3x2 Câu 43 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = C R = 14 D R = 15 Câu 44 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080255 đồng C 36080253 đồng D 36080251 đồng π R2 Câu 45 Biết sin 2xdx = ea Khi giá trị a là: A ln B C D − ln Câu 46 Hàm số hàm số sau đồng biến R 4x + A y = B y = x4 + 3x2 x+2 C y = x3 + 3x2 + 6x − D y = −x3 − x2 − 5x 3x cắt đường thẳng y = x + m Câu 47 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A Không tồn m B m = C m = D m = −2 Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 49 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π B 6π C D A 5 √ Câu 50 Tính đạo hàm hàm số y = log4 x2 − 1 x x x A y′ = √ B y′ = C y′ = D y′ = (x − 1)log4 e (x − 1) ln 2(x − 1) ln x2 − ln - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001