Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tíc[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 4 D πR3 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B ln x > ln y C log x > log y D loga x > loga y a a Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? A R = 29 B R = C R = D R = 21 Câu 4.√ Bất đẳng thức √ πsau đúng? e A ( − 1) < ( − 1) C 3−e > 2−e √ √ π e B ( + 1) > ( + 1) D 3π < 2π Câu Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh √ 2 A πRl B π l − R C 2πRl D 2π l2 − R2 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + B y = tan x A y = x−1 C y = x3 − 2x2 + 3x + D y = sin x Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A −6 B C D Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 2; 0) B A(0; 0; 3) C A(1; 0; 3) D A(0; 2; 3) Câu 10 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x B C D − A 6 Câu 11 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [ ; 2] [22; +∞) B ( ; +∞) C [22; +∞) D ( ; 2] [22; +∞) 4 Câu 12 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; −2) C I(0; 1; 2) D I(1; 1; 2) R Câu R13 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = 2F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C Trang 1/4 Mã đề 001 Câu 14 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32 32π 8π B V = C V = D V = A V = 5 log √a Câu 15 Cho a > a , Giá bằng? √ trị a A B C D Câu 16 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 52 B yCD = −2 C yCD = D yCD = 36 p Câu 17 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếu < x < π y > − 4π2 C Nếux > thìy < −15 D Nếux = y = −3 Câu 18 Kết đúng? R sin3 x + C A sin2 x cos x = − R C sin2 x cos x = cos2 x sin x + C sin3 x + C R D sin2 x cos x = −cos2 x sin x + C B R sin2 x cos x = Câu 19 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + ty = + 2tz = B x = + 2ty = + tz = − 4t C x = + 2ty = + tz = D x = + 2ty = + tz = Câu 20 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (−2; 3; 1) C M ′ (−2; −3; −1) D M ′ (2; −3; −1) Câu 21 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x −1+ B y = − A y = ln ln 5 ln ln x x C y = +1− D y = + ln ln 5 ln Câu 22 Cho < a , 1; < x , Đẳng thức sau sai? A loga x2 = 2loga x B aloga x = x C loga (x − 2)2 = 2loga (x − 2) D loga2 x = loga x x x Câu 23 Số nghiệm phương trình + 5.3 − = A B C D Câu 24 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 6; 0) B (−2; 0; 0) C (0; 2; 0) D (0; −2; 0) Câu 25 Cho hai số thực a, bthỏa mãn a√> b > Kết luận nào√sau sai? √ √ √5 √ a b − − A e > e B a b D a < b Câu 26 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ a 3a 10 3a 13 3a 13 A B C D 20 26 13 Câu 27 Người ta cần cắt tôn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu Trang 2/4 Mã đề 001 4a2 b A √ 3π 2a2 b B √ 3π 4a2 b C √ 2π 2a2 b D √ 2π Câu 28 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5 5π 20 5πa3 5 A V = πa B V = a C V = D V = πa 6 3x − Câu 29 Tập nghiệm bất phương trình log4 (3 x − 1).log ≤ là: 16 4 A S = [1; 2] B S = (1; 2) C S = (0; 1] ∪ [2; +∞) D S = (−∞; 1] ∪ [2; +∞) Câu 30 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ MN mặt phẳng √ (ABCD) 60 Tính sin góc MN và√mặt phẳng (S BD) 10 B C D A 5 Câu 31 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi là: √ A 8π B 2π C 3π D 4π Câu 32 Tứ diện OABC có OA = OB = OC = a đôi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 B C D A 24 12 x−3 y−6 z−1 Câu 33 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 A = = B = = −1 −3 x y−1 z−1 x−1 y z−1 C = = D = = −1 −3 −1 −3 Câu 34 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > C m > m < −1 D m > m < − Câu 35 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 250π 500π 400π 125π A B C D 9 Câu 36 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối √ √ √ √ chóp S ABC 3 3 a 15 a 15 a 15 a A B C D 16 3x Câu 37 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C m = D Không tồn m Câu 38 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a < a x > ay ⇔ x < y x y C Nếu a > a = a ⇔ x = y D Nếu a > a x > ay ⇔ x > y Trang 3/4 Mã đề 001 Câu 39 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A ln + 6π Câu 40 Biết π R2 B 6π ln + 5 C π cos x F(− ) = π Khi giá trị sin x + cos x 6π D 3π ln + sin 2xdx = ea Khi giá trị a là: A − ln B C D ln Câu 41 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = 2loga e C P = + 2(ln a)2 D P = ln a Câu 42 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 3mn + n + A log2 2250 = B log2 2250 = m n 2mn + n + 2mn + n + D log2 2250 = C log2 2250 = n n Câu 43 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D cos x π Câu 44 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 3π 6π A ln + B C ln + D ln + 5 5 ′ ′ ′ Câu 45 Cho hình lăng trụ đứng ABC.A B C có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 A 6a B 3a C 4a D 9a3 R ax + b 2x )e + C Khi giá trị a + b là: Câu 46 Biết a, b ∈ Z cho (x + 1)e2x dx = ( A B C D Câu 47 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 3x Câu 48 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B Không tồn m C m = D m = −2 Câu 49 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 500π 400π 250π 125π B C D A 9 Câu 50 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −10 C m = D m = m = −16 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001