Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm s[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≥ C m ≤ D m < p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếux > thìy < −15 C Nếu < x < π y > − 4π2 D Nếu < x < y < −3 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 600 C 450 D 360 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π D √ B 3π C A 3π 3 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m ≥ e−2 B m > C m > 2e D m > e2 Câu Bất đẳng thức sau đúng? A 3π < 2π C 3−e > 2−e √ √ e π B ( √3 − 1) < ( √3 − 1) π e D ( + 1) > ( + 1) Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 12 (m) B S = 24 (m) C S = 20 (m) D S = 28 (m) ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu Cho hàm số y = cx + d A ad > B ab < C bc > D ac < Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m , C m , −1 D m = √ sin 2x Câu 10 Giá trị lớn hàm số y = ( π) trên√R bằng? A B π C π D Câu 11 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 4π C 2π D π Câu 12 Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2] B (1; 2) C (−∞; 2] D [2; +∞) Câu 13 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [ ; 2] [22; +∞) B ( ; 2] [22; +∞) C [22; +∞) D ( ; +∞) 4 Trang 1/4 Mã đề 001 √ Câu √ 14 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 1200 B 600 C 300 D 450 y+2 z x−1 = = Viết phương Câu 15 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − y − 2z = C (P) : x − 2y − = D (P) : x − y + 2z = Câu 16 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 Câu 17 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (−2; 1; 2) C (−2; −1; 2) D (2; −1; 2) √ ′ ′ ′ ′ Câu 18 √ 3Cho lăng trụ ABC.A √ B3C có đáy a, AA3 = 3a Thể tích khối3 lăng trụ cho là: A 3a B 3a C 3a D a Câu 19 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; 2) C S = [ -ln3; +∞) D S = (−∞; ln3) Câu 20 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 − 2x2 + 3x + C y = x3 D y = x2 − 2x + Câu 21 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 C D A −6 B Câu 22 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + 2ty = + tz = − 4t B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + ty = + 2tz = Câu 23 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ 2 2 a b2 − 3a2 a 3b − a A VS ABC = B VS ABC = 12 √ 12 √ 3ab2 3a2 b C VS ABC = D VS ABC = 12 12 Câu 24 Đồ thị hàm số sau có vô số đường tiệm cận đứng? A y = tan x B y = sin x 3x + C y = x3 − 2x2 + 3x + D y = x−1 , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A 3π B C 3π D √ 3 Câu 25 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Trang 2/4 Mã đề 001 Câu 26 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √h √ √ √ 2π − 3 2π − π− 3 A B C D 12 12 Câu 27 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga (xy) = loga x.loga y B loga = a loga a = n C loga x = log x , (x > 0, n , 0) D loga x có nghĩa với ∀x ∈ R an Câu 28 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi √ là: A 3π B 2π C 4π D 8π Câu 29 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−4; −1) B S = [−1; +∞) C S = (−∞; −4) ∪ (−1; +∞) D S = (−1; +∞) √ x− x+2 có tất tiệm cận? Câu 30 Đồ thị hàm số y = x2 − A B C D Câu 31 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 2,075 B 8,9 C 11 D 33,2 Câu 32 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (1; −2; 7) B (4; −6; 8) C (−2; 3; 5) D (−2; 2; 6) Câu 33 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x π 3π 3π π B V = C V = D V = A V = 2 R ax + b 2x Câu 34 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 35 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A 6π B C D 5 Câu 36 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa 17 πa2 15 A B C D Trang 3/4 Mã đề 001 Câu 37 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích toàn phần (T ) A 12π B 10π C 8π D 6π x + mx + đạt cực tiểu điểm x = Câu 38 Tìm tất giá trị tham số m để hàm số y = x+1 A m = −1 B Khơng có m C m = D m = Câu 39 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x > ay ⇔ x < y x y C Nếu a > a = a ⇔ x = y D Nếu a < a x > ay ⇔ x < y Câu 40 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vuông góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo √ góc đường thẳng S B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 Câu 41 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = πRl + πR2 C S = πRh + πR2 D S = 2πRl + 2πR2 Câu 42 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 e2x A (2x + 1)2 dx = +C B e2x dx = + C R R C sin xdx = cos x + C D x dx =5 x + C Câu 43 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 44 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 45 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox D m < −2 A m > m < −1 B m > m < − C m > π cos x F(− ) = π Khi giá trị Câu 46 Biết hàm F(x) nguyên hàm hàm f (x) = sin x + cos x F(0) bằng: 3π 6π 6π 6π A ln + B ln + C D ln + 5 5 √ 2(x−1)+1 x − ≤ x − 4x + Tìm mệnh đề Câu 47 Cho bất phương trình A Bất phương trình vơ nghiệm B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình với x ∈ (4; +∞) Câu 48 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (3; 5) C (1; 5) D (−3; 0) Câu 49 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; ′ AA′ =√2a Gọi α số đo góc √ hai đường thẳng AC DB Tính giá trị cos α.√ 3 A B C D Câu 50 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 - - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 001