1. Trang chủ
  2. » Tất cả

Đề ôn khảo sát chất lượng thptqg môn toán (854)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 124,66 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = x x2 + 1 trên[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Giá trị nhỏ hàm số y = A y = − R B y = R x2 x tập xác định +1 C y = D y = −1 R R Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (−2; 0; 0) C (0; 6; 0) D (0; 2; 0) Câu Hình nón có bán kính đáy R, đường sinh l diện√tích xung quanh nó√bằng A πRl B 2πRl C 2π l2 − R2 D π l2 − R2 Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga (x − 2)2 = 2loga (x − 2) B loga2 x = loga x C loga x2 = 2loga x D aloga x = x Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 360 C 600 D 450 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến R D Hàm số nghịch biến R Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ A R = 21 B R = C R = D R = 29 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; −2) C I(1; 1; 2) D I(0; 1; 2) Câu 10 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = x4 + C y = x4 + 2x2 + D y = −x4 + Câu 11 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 C − D A B 6 Câu 12 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [22; +∞) B [ ; 2] [22; +∞) C ( ; 2] [22; +∞) D ( ; +∞) 4 Câu 13 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ −1 C m > D m ≥ Trang 1/4 Mã đề 001 √ Câu 14 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a B C a D A 2 Câu 15 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số đồng biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (1; +∞) C Hàm số nghịch biến khoảng (−∞; −3) D Hàm số nghịch biến khoảng (−3; 1) √ sin 2x R bằng? Câu 16 Giá trị lớn hàm số y = ( π) √ A B π C D π Câu 17 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (2; −1; 2) C (−2; 1; 2) D (−2; −1; 2) Câu 18 Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 6πR3 C 2πR3 D 4πR3 Câu 19 Kết đúng? R sin3 x + C A sin x cos x = R C sin2 x cos x = −cos2 x sin x + C B R sin2 x cos x = cos2 x sin x + C D R sin2 x cos x = − sin3 x + C đúng? x B Hàm số nghịch biến R D Hàm số đồng biến R Câu 20 Kết luận sau tính đơn điệu hàm số y = A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến (0; +∞) Câu 21 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + ty = + 2tz = B x = + 2ty = + tz = C x = + 2ty = + tz = − 4t D x = + 2ty = + tz = Câu 22 Cho hàm số y = A ac < ax + b có đồ thị hình vẽ bên Kết luận sau sai? cx + d B bc > C ab < D ad > Câu 23 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = −x4 + 3x2 − C y = x − 2x + 3x + D y = x2 − 2x + Câu 24 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C −6 D Câu 25 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ 3ab 3a b A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu 26 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S √ A 125dm2 B 106, 25dm2 C 75dm2 D 50 5dm2 Trang 2/4 Mã đề 001 Câu 27 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 50m B 48m C 47m D 49m y−6 z−1 x−3 = = Câu 28 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 A = = B = = −3 −1 y−1 z−1 x−1 y z−1 x = = D = = C −1 −3 −1 −3 Câu 29 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 10 3a 13 a 3a 13 A B C D 13 20 26 1 Câu 30 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) 4k(k + 1) k(k + 1) B M = C M = D M = A M = 2loga x loga x 3loga x loga x √ x− x+2 Câu 31 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D 1 Câu 32 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > B m < C m > D m > m < √ Câu 33 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a 10 a B a D A C Câu 34 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ 3a 3a 3a 30 a 15 A B C D 10 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 35 Trong không gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ → − −v = (1; 13; 16) −u + 3→ −v = (1; 14; 15) A u + 3→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 36 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = 2 C (x − 1) + (y − 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 37 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 6a3 B 3a3 C 9a3 D 4a3 Trang 3/4 Mã đề 001 Câu 38 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C −4 D Câu 39 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể √ √ √ √ tích khối trụ (T ) lớn 400π 125π 250π 500π B C D A 9 √ Câu 40 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình có nghiệm thuộc khoảng (−∞; 1) B Bất phương trình vơ nghiệm C Bất phương trình với x ∈ (4; +∞) D Bất phương trình với x ∈ [ 1; 3] d Câu 41 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) A a B 2a C a D a Câu 42 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 6π C 8π D 12π Câu 43 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ góc đường thẳng S B mp(S AC) Tính giá√trị sin α √ S A = 2a Gọi α số đo 15 15 B C D A 10 Câu 44 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 26abc C P = 2abc D P = 2a+b+c 3x Câu 45 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = C Không tồn m D m = −2 Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC a3 a3 15 a 15 a3 15 A B C D 16 Câu 47 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; ′ AA′ =√2a Gọi α số đo góc √ hai đường thẳng AC DB Tính giá trị cos α.√ 3 A B C D Câu 48 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 23 25 27 A B C D 4 4 Câu 49 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 15 πa 17 πa2 17 πa 17 A B C D Trang 4/4 Mã đề 001

Ngày đăng: 01/04/2023, 09:43