Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Biết F(x) là một nguyên hàm của hàm số f (x)[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 x π π π F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = − C F( ) = + D F( ) = − 4 4 4 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếux = y = −3 C Nếu < x < π y > − 4π D Nếu < x < y < −3 + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? C ∀m ∈ R D −4 < m < A < m , B m < Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m < C m ≥ D m ≤ Câu Biết F(x) nguyên hàm hàm số f (x) = Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường hypebol C Đường parabol D Đường elip Câu Kết đúng? R A sin2 x cos x = −cos2 x sin x + C R C sin2 x cos x = cos2 x sin x + C sin3 x + C R sin3 x + C D sin2 x cos x = − −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ Câu Tính diện tích S hình phẳng giới hạn đường y = x , y = −x 1 B S = C S = D S = A S = 6 Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A ( ; 2] [22; +∞) B [ ; 2] [22; +∞) C ( ; +∞) D [22; +∞) 4 Câu 10 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ −1 C m > D m ≥ B R sin2 x cos x = Câu 11 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m , −1 C m , D m = Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = −7 D m = Trang 1/4 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(3; 7; 4) B C(5; 9; 5) C C(1; 5; 3) D C(−3; 1; 1) Câu 14 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh√huyền 2a Tính thể tích khối nón √ 2π.a3 π.a3 π 2.a3 4π 2.a3 B C D A 3 3 Câu 15 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 16 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C D − 6 Câu 17.√ Cho hai số thực a, bthỏa mãn√ a > b > Kết luận √ √ √5 sau sai? a √5 − − 2 D e > eb A a b C a < b Câu 18 Kết đúng? R sin3 x A sin2 x cos x = + C R C sin2 x cos x = cos2 x sin x + C B R sin2 x cos x = −cos2 x sin x + C sin3 x + C Câu 19 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ A R = 21 B R = C R = 29 D R = D R sin2 x cos x = − Câu 20 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m > e2 B m > C m > 2e D m ≥ e−2 Rm dx theo m? Câu 21 Cho số thực dươngm Tính I = x + 3x + 2m + m+2 m+1 m+2 ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( 2m + m+2 m+1 m+2 x π π π Câu 22 Biết F(x) nguyên hàm hàm số f (x) = F( ) = Tìm F( ) √ cos2 x π ln π π ln π π ln π π ln π A F( ) = − B F( ) = + C F( ) = − D F( ) = + 4 4 4 Câu 23 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B πR3 C 2πR3 D 4πR3 Câu 24 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; 3; 1) D M ′ (2; −3; −1) ax + b Câu 25 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ac < B ad > C ab < D bc > Câu 26 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C −6 D Câu 27 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa A 3πa3 B C πa3 D πa3 3 Trang 2/4 Mã đề 001 Câu 28 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hoành độ nhỏ A S = (−∞; −4) ∪ (−1; +∞) B S = (−1; +∞) C S = [−1; +∞) D S = (−4; −1) Câu 29 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 48m B 47m C 49m D 50m √ Câu 30 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích khối chóp S ABC √ √ √ 3 √ a 2a a B A a3 C D 3 Câu 31 Tập xác định hàm số y = logπ (3 x − 3) là: A Đáp án khác B [1; +∞) C (1; +∞) D (3; +∞) √ x− x+2 có tất tiệm cận? Câu 32 Đồ thị hàm số y = x2 − A B C D m Câu 33 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 19 A S = (−2; − ) ∪ ( ; 7) B S = (−2; − ) ∪ ( ; 6) 4 4 19 C S = (−3; −1) ∪ (1; 2) D S = (−5; − ) ∪ ( ; 6) 4 Câu 34 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = 2 C (x − 1) + (y − 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = R ax + b 2x )e + C Khi giá trị a + b là: Câu 35 Biết a, b ∈ Z cho (x + 1)e2x dx = ( A B C D √ Câu 36 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = √ C y′ = D y′ = (x − 1) ln 2(x − 1) ln (x − 1)log4 e x2 − ln Câu 37 Hàm số hàm số sau có đồ thị hình vẽ bên A y = x3 − 3x2 B y = −x4 + 2x2 C y = −2x4 + 4x2 Câu 38 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B 1 R3 R2 C R3 D |x2 − 2x|dx = − R3 |x − 2x|dx = (x − 2x)dx + D y = −x4 + 2x2 + R3 (x2 − 2x)dx R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − R3 (x2 − 2x)dx Câu 39 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 31π 32π A B C 6π D 5 Trang 3/4 Mã đề 001 Câu 40 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080255 đồng C 36080251 đồng D 36080253 đồng Câu 41 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ πa2 17 πa2 17 πa2 17 πa2 15 B C D A 4 Câu 42 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính M + m A B C D Câu 43 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = 2 C (x − 1) + (y − 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = √ 2x − x2 + có số đường tiệm cận đứng là: Câu 45 Đồ thị hàm số y = x2 − A B C D Câu 46 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng B 36080254 đồng C 36080253 đồng D 36080251 đồng Câu 47 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 48 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) Tính thể tích khối vng góc với mặt phẳng (ABC), diện tích tam giác S BC a √ √ √ chóp S ABC √ 3 3 a 15 a a 15 a 15 B C D A 16 Câu 49 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x > y x y C Nếu a > a > a ⇔ x < y D Nếu a < a x > ay ⇔ x < y Câu 50 Hàm số hàm số sau đồng biến R 4x + B y = x3 + 3x2 + 6x − A y = x+2 C y = x4 + 3x2 D y = −x3 − x2 − 5x - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001