1. Trang chủ
  2. » Tất cả

Đề ôn khảo sát chất lượng thptqg môn toán (589)

4 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 121,88 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Kết quả nào đúng? A ∫ sin2 x cos x = cos2x si[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Kết đúng? R A sin2 x cos x = cos2 x sin x + C R C sin2 x cos x = −cos2 x sin x + C sin3 x B sin x cos x = − + C 3 R sin x + C D sin2 x cos x = Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m ≥ C m > D m < R Câu Cho mãn a > b > Kết luận√nào sau√ sai? √ √ √5 hai số thực a, bthỏa √5 a A a < b B e > eb C a− < b− D a > b Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m ≥ e−2 B m > C m > e2 D m > 2e Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 5; 0) C (0; 0; 5) D (0; 1; 0) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (−2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; 3; 1) Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (−2; −1; 2) C (−2; 1; 2) D (2; −1; −2) Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ C R = 21 D R = A R = B R = 29 √ sin 2x R bằng? Câu Giá trị lớn hàm số y = ( π) √ A B π C D π Câu 10 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 52 C yCD = D yCD = 36 Câu 11 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − m2 − 12 4m2 − A B C D m 2m 2m 2m Câu 12 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [ ; 2] [22; +∞) B [22; +∞) C ( ; 2] [22; +∞) D ( ; +∞) 4 √ Câu 13 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Khơng có tiệm cận Trang 1/4 Mã đề 001 C Có tiệm cận ngang tiệm cận đứng D Có tiệm cận ngang khơng có tiệm cận đứng Câu 14 Trong khơng gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = Câu 15 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m > B m ≥ C m ≥ −1 D m ≥ Câu 16 Biết R5 A T = dx = ln T Giá trị T là: 2x − B T = C T = √ D T = 81 Câu 17 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; 1; 0) C (0; 5; 0) D (0; −5; 0) Câu 18 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m < C m > D m ≥ ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu 19 Cho hàm số y = cx + d A ad > B ac < C bc > D ab < √ ′ ′ ′ Câu 20 B C có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: √ 3Cho lăng trụ ABC.A A 3a B a C 3a3 D 3a3 x Câu 21 Giá trị nhỏ hàm số y = tập xác định x +1 1 B y = −1 C y = D y = A y = − R R R R 2 Câu 22 Hàm số sau đồng biến R? A y = x2 C y = x4 + 3x2 + B y = tan √ x √ D y = x2 + x + − x2 − x + Câu 23 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B πR3 C 4πR3 D 2πR3 Câu 24 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 600 C 450 D 360 Câu 25 Số nghiệm phương trình x + 5.3 x − = A B C D x−3 y−6 z−1 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 A = = B = = −1 −1 −3 x y−1 z−1 x−1 y z−1 C = = D = = −3 −1 −3 Câu 27 Đồ thị hàm số sau có điểm cực trị: A y = 2x4 + 4x2 + B y = −x4 − 2x2 − C y = x4 − 2x2 − D y = x4 + 2x2 − Trang 2/4 Mã đề 001 Câu 28 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 2π B 4π C 8π D 3π 3x − Câu 29 Tập nghiệm bất phương trình log4 (3 x − 1).log ≤ là: 16 4 A S = [1; 2] B S = (1; 2) C S = (0; 1] ∪ [2; +∞) D S = (−∞; 1] ∪ [2; +∞) Câu 30 Trong hệ tọa độ Oxyz, cho A(1; kính AB có phương trình √ 2; 3), B(−3; 0; 1) Mặt2 cầu đường 2 2 B (x + 1) + (y − 1) + (z − 2)2 = A (x + 1) + (y − 1) + (z − 2) = 2 C (x − 1) + (y + 1) + (z + 2) = D (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 Câu 31 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ√(T ) Tính cạnh hình vng √ 3a 10 B 6a C 3a D 3a A (2 ln x + 3)3 Câu 32 Họ nguyên hàm hàm số f (x) = : x (2 ln x + 3)2 (2 ln x + 3)4 (2 ln x + 3)4 ln x + + C B + C C + C D + C A 2 Câu 33 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 34 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 8π C 6π D 12π Câu 35 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a > a x = ay ⇔ x = y x y C Nếu a > a > a ⇔ x > y D Nếu a < a x > ay ⇔ x < y Câu 36 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080254 đồng C 36080253 đồng D 36080255 đồng √ Câu 37 Tính đạo hàm hàm số y = log4 x2 − x x x ′ ′ ′ D y = A y′ = B y = C y = √ 2(x2 − 1) ln (x2 − 1)log4 e (x2 − 1) ln x2 − ln Câu 38 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C −2 D Câu 39 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ cách hai đường thẳng √ √ a 15 3a 3a 3a 30 A B C D 2 10 x2 + mx + Câu 40 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B m = −1 C m = D Khơng có m Trang 3/4 Mã đề 001 Câu 41 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = r 3x + Câu 42 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (1; +∞) C D = (−1; 4) ———————————————– D D = (−∞; 0) r 3x + Câu 43 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) B D = (1; +∞) C D = (−∞; −1] ∪ (1; +∞) D D = (−1; 4) Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 10 31 11 17 21 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 → − → − Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho u = (2; 1; 3), v = (−1; 4; 3) Tìm tọa độ −u + 3→ −v véc tơ 2→ → − → − −u + 3→ −v = (1; 14; 15) A u + v = (2; 14; 14) B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Câu 46 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc DB′ Tính giá trị cos α √ hai đường thẳng AC √ 3 B C D A √ Câu 47 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình với x ∈ (4; +∞) D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Câu 48 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln C y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 49 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ cách hai đường√thẳng MN S C √ 3a 3a a 15 3a 30 A B C D 10 Câu 50 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π A B 6π C D 5 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001

Ngày đăng: 01/04/2023, 09:35