Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt p[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; −5; 0) C (0; 0; 5) D (0; 1; 0) ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ad > B bc > C ac < D ab < Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B −1 < m < C m ∈ (−1; 2) D m ∈ (0; 2) Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > 2e B m > C m > e2 D m ≥ e−2 Câu √Cho hai√ số thực a, bthỏa mãn√ a > b > Kết luận sau sai? √ √ √ B a < b C ea > eb D a > b A a− < b− Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 450 B 300 C 600 D 360 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = − B y = + ln ln 5 ln x x +1− D y = −1+ C y = ln ln 5 ln ln Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 3ab2 A VS ABC = B VS ABC = 12 √ 12 √ a2 3b2 − a2 3a2 b C VS ABC = D VS ABC = 12 12 √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Có tiệm cận ngang tiệm cận đứng C Có tiệm cận ngang khơng có tiệm cận đứng D Khơng có tiệm cận Câu 10 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln + B − ln C − ln − D ln − 2 2 Câu 11 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x đường thẳng y = x 1 A B C − D 6 ′ ′ ′ ′ Câu 12 Cho hình lập phương ABCD.A B C D có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Trang 1/4 Mã đề 001 Câu 13 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo log √b a3 4m2 − m2 − 12 m2 − A B C 2m 2m 2m Câu 14 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = −x4 + C y = x4 + 2x2 + √ Câu 15 Đạo hàm hàm số y = log 3x − là: 6 A y′ = B y′ = C y′ = (3x − 1) ln 3x − ln 3x − ln Câu 16 Cho a > a , Giá trị alog A B √ a bằng? √ C Câu 17 Cho a > 1; < x < y Bất đẳng thức sau đúng? C loga x > loga y A ln x > ln y B log x > log y m giá trị P = loga2 b − D m2 − 12 m D y = x4 + D y′ = (3x − 1) ln D D log x > log y a a ′ ′ ′ Câu 18 Cho lăng trụ ABC.A B C có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a 2a 3a a A B √ C D √ 5 , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π B C 3π A √ D 3π 3 Câu 19 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu 20 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x +1− B y = −1+ A y = ln ln 5 ln ln x x C y = − D y = + ln ln 5 ln Câu R21 Công thức sai? R A R e x = e x + C B R sin x = − cos x + C C cos x = sin x + C D a x = a x ln a + C Câu 22 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; −2; 0) C (0; 2; 0) D (0; 6; 0) Câu 23 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m > e2 B m > C m ≥ e−2 D m > 2e Câu 24 √ Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh 2 A π l − R B 2π l2 − R2 C 2πRl D πRl p Câu 25 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếux = y = −3 C Nếu < x < π y > − 4π D Nếux > thìy < −15 Câu 26 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vng Trang 2/4 Mã đề 001 A 3a B 6a √ C 3a Câu 27 Đồ thị hàm số sau có điểm cực trị: A y = −x4 − 2x2 − B y = 2x4 + 4x2 + C y = x4 − 2x2 − √ 3a 10 D D y = x4 + 2x2 − Câu 28 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S √ A 106, 25dm2 B 75dm2 C 125dm2 D 50 5dm2 Câu 29 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình √ 2 2 2 A (x + 1) + (y − 1) + (z − 2) = B (x + 1) + (y − 1) + (z − 2) = C (x − 1)2 + (y + 1)2 + (z + 2)2 = D (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 Câu 30 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 4a2 b 2a2 b 4a2 b D √ A √ B √ C √ 3π 3π 2π 2π 1 Câu 31 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) 4k(k + 1) k(k + 1) A M = B M = C M = D M = loga x 2loga x loga x 3loga x Câu 32 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 − 4x D x3 + − 4x + A 2x3 − 4x4 B x3 − x4 + 2x C x3 + 4 x3 Câu 33 Tìm tất giá trị tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch biến R A m ≤ B m ≤ −2 C m ≥ −8 D m < −3 Câu 34 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m > m < − C m > m < −1 D m < −2 R ax + b 2x Câu 35 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D π R2 Câu 36 Biết sin 2xdx = ea Khi giá trị a là: A B − ln C ln D Câu 37 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 8π C 10π D 12π Câu 38 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 10 31 21 11 17 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 39 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x + x, trục Oxvà hai đường thẳng x = −1; x = 27 23 25 29 A B C D 4 4 Trang 3/4 Mã đề 001 Câu 40 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 12a3 C 6a3 D 4a3 Câu 41 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa2 17 πa 15 B C D A Câu 42 Hàm số hàm số sau có đồ thị hình vẽ bên C y = −x4 + 2x2 D y = −x4 + 2x2 + A y = −2x4 + 4x2 B y = x3 − 3x2 Câu 43 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 31π 32π A B 6π C D 5 Câu 44 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = ln a C P = + 2(ln a)2 D P = Câu 45 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a 15 a 15 a a 15 A B C D 16 Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 √ Câu 47 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình vơ nghiệm Câu 48 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = m = −16 C m = D m = Câu 49 Chọn mệnh đề mệnh đề sau: R3 R3 R2 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B 1 R3 R2 R3 C R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = − D R2 (x2 − 2x)dx + 1 R3 |x2 − 2x|dx R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx Câu 50 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRh + πR2 C S = πRl + 2πR2 D S = πRl + πR2 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001