Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Biết F(x) là một nguyên hàm của hàm số f (x)[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 x π π π F( ) = √ Tìm F( ) cos x π ln π π ln π π ln π π ln π B F( ) = − C F( ) = − D F( ) = + A F( ) = + 4 4 4 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (2; 3; 1) C M ′ (2; −3; −1) D M ′ (−2; 3; 1) p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếux = y = −3 C Nếu < x < y < −3 D Nếu < x < π y > − 4π2 + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B −4 < m < C < m , D ∀m ∈ R Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 30a3 C 100a3 D 60a3 Câu Biết F(x) nguyên hàm hàm số f (x) = Câu Hàm số sau đồng biến R? A y = x2 C y = tan x B y = x√4 + 3x2 + √ D y = x2 + x + − x2 − x + Câu √Cho hai√ số thực a, bthỏa mãn a > b > Kết luận√ sau sai? √ √5 √ − − a b 2 A a e C a > b D a < b Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga x2 = 2loga x B aloga x = x C loga2 x = loga x D loga (x − 2)2 = 2loga (x − 2) Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu 10 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có√diện tích lớn bằng? √ √ 3 3 A (m ) B (m2 ) C (m ) D 3(m2 ) Câu 11 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 4π C π D 2π Câu 12 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều√cao tứ diện √ √ π 3.a2 π 2.a2 2π 2.a2 A π 3.a B C D 3 Trang 1/4 Mã đề 001 √ Câu 13 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 C ( ; +∞) D (0; 1) A (1; +∞) B (0; ) 4 √ Câu 14 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang tiệm cận đứng B Khơng có tiệm cận ngang có tiệm cận đứng C Khơng có tiệm cận D Có tiệm cận ngang khơng có tiệm cận đứng Câu 15 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số đồng biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (1; +∞) Câu 16 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D π π π x F( ) = √ Tìm F( ) Câu 17 Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = − C F( ) = + D F( ) = − 4 4 4 Câu 18 Hàm số sau đồng biến R? A y = x√2 √ C y = x2 + x + − x2 − x + B y = tan x D y = x4 + 3x2 + √ Câu 19 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành π 10π A V = π B V = C V = D V = 3 R1 √3 7x + 1dx Câu 20 Tính I = 45 A I = 28 B I = 60 28 Câu R21 Kết đúng? A sin2 x cos x = cos2 x sin x + C R sin3 x C sin2 x cos x = − + C C I = 20 D I = 21 sin2 x cos x = −cos2 x sin x + C R sin3 x D sin2 x cos x = + C B R Câu 22 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m ≤ C m > D m ≥ Câu 23 Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = cos x B y = x2 D y = x4 + 3x2 + Câu 24 Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B ln x > ln y C log x > log y D log x > log y a a Câu 25 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = sin x B y = tan x 3x + C y = D y = x3 − 2x2 + 3x + x−1 Trang 2/4 Mã đề 001 Câu 26 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số h √ √ √ √ 2π − π− 2π − 3 B C D A 12 12 Câu 27 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−4; −1) B S = (−∞; −4) ∪ (−1; +∞) C S = [−1; +∞) D S = (−1; +∞) Câu 28 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 43.091.358 đồng B 46.538667 đồng C 48.621.980 đồng D 45.188.656 đồng Câu 29 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 47m B 49m C 48m D 50m Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (4; −6; 8) B (−2; 3; 5) C (−2; 2; 6) D (1; −2; 7) Câu 31 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa3 3 3 C πa D A 3πa B πa 3 Câu 32 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 8,9 B 33,2 C 2,075 D 11 Câu 33 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x π 3π 3π π B V = C V = D V = A V = Câu 34 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 10π C 8π D 6π Câu 35 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a a 15 a 15 a 15 A B C D 16 π R2 Câu 36 Biết sin 2xdx = ea Khi giá trị a là: A B C ln D − ln Câu 37 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRh + πR2 C S = πRl + 2πR2 D S = πRl + πR2 Trang 3/4 Mã đề 001 Câu 38 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −2 D −4 Câu 39 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 |x2 − 2x|dx = (x2 − 2x)dx − R3 1 R3 R2 R3 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx |x2 − 2x|dx (x2 − 2x)dx x2 + mx + đạt cực tiểu điểm x = Câu 40 Tìm tất giá trị tham số m để hàm số y = x+1 A m = B m = C m = −1 D Khơng có m Câu 41 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = + 2(ln a)2 C P = D P = ln a d Câu 42 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cạnh BC, S A = S C = S M = a Tính khoảng √ cách từ S đến mặt phẳng (ABC) B 2a C a D a A a Câu 43 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 27 25 29 A B C D 4 4 Câu 44 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x > ay ⇔ x < y C Nếu a > a x = ay ⇔ x = y D Nếu a < a x > ay ⇔ x < y Câu 45 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 4a3 B 6a3 C 3a3 D 12a3 x2 Câu 46 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 64 128 32 Câu 47 Hàm số y = x − 3x + có giá trị cực đại là: A B C D −3 √ 2x − x2 + Câu 48 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C Trang 4/4 Mã đề 001