Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 C C(6; −17; 21) D C(6; 21; 21) A C(20; 15; 7) B C(8; ; 19) Câu Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = x2 B y = x4 + 3x2 + D y = cos x , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A √ B C 3π D 3π 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu R4 Cơng thức sai? A a x = a x ln a + C R C sin x = − cos x + C R B e x = e x + C R D cos x = sin x + C đúng? x B Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến R x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 D y = A y = B y = −1 C y = − R R R R 2 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a 3a a 2a A B C √ D √ 5 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 21 C R = 29 D R = Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = 36 C yCD = 52 D yCD = −2 Câu 10 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(0; 0; 3) C A(0; 2; 3) D A(1; 2; 0) Câu 11 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 4m2 − m2 − 12 m2 − 12 A B C D 2m 2m 2m m Trang 1/4 Mã đề 001 Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu 13 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ C m ≥ −1 D m > Câu 14 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = x4 + 2x2 + C y = −x4 + D y = x4 + Câu 15 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C − D 6 Câu 16 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường tròn ngoại √ tứ diện √ tiếp tam giác BCD có chiều cao chiều cao √ √ 2π 2.a2 π 3.a2 π 2.a2 B π 3.a C D A 3 Câu 17 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D √ Câu 18 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành π 10π A V = B V = π C V = D V = 3 Câu 19 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A −1 < m < B m ∈ (0; 2) C m ∈ (−1; 2) D m ≥ Câu 20 √ Hàm số sau√đây đồng biến R? A y = x2 + x + − x2 − x + B y = x2 C y = tan x D y = x4 + 3x2 + Câu 21 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B πR3 C 2πR3 D 6πR3 √ x Câu 22 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H1) B (H3) C (H4) D (H2) Câu 23 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(8; ; 19) C C(6; −17; 21) D C(6; 21; 21) Câu 24 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; −3; −1) D M ′ (2; 3; 1) Câu 25 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 20 (m) B S = 24 (m) C S = 12 (m) D S = 28 (m) Câu 26 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: B loga = a loga a = A loga xn = log x , (x > 0, n , 0) an C loga (xy) = loga x.loga y D loga x có nghĩa với ∀x ∈ R Trang 2/4 Mã đề 001 Câu 27 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 47m B 50m C 49m D 48m 2x − Câu 28 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±1 B m = ± C m = ±2 D m = ±3 Câu 29 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5 5 5π 20 5πa3 A V = πa B V = πa C V = a D V = 6 Câu 30 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 24 12 x + 2x Câu 31 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A B −2 C D 15 Câu 32 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ√(T ) Tính cạnh hình vng √ 3a 10 B 3a C 3a D 6a A Câu 33 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa3 3 3 A πa B 3πa C πa D r 3x + Câu 34 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (−∞; 0) C D = (1; +∞) D D = (−1; 4) ———————————————– Câu 35 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 33π 32π C D A 6π B 5 Câu 36 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 37 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 12a3 B 6a3 C 3a3 D 4a3 Câu 38 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2a+b+c C P = 2abc D P = 2a+2b+3c d Câu 39 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) A a B 2a C a D a Trang 3/4 Mã đề 001 Câu 40 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a < a x > ay ⇔ x < y x y C Nếu a > a > a ⇔ x > y D Nếu a > a x = ay ⇔ x = y Câu 41 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = C P = + 2(ln a)2 D P = ln a Câu 42 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 43 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (−3; 0) C (−1; 1) D (3; 5) Câu 44 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc hai đường thẳng AC √ DB′ Tính giá trị cos α.√ B C D A Câu 45 Hàm số hàm số sau có đồ thị hình vẽ bên D y = −2x4 + 4x2 A y = −x4 + 2x2 + B y = −x4 + 2x2 C y = x3 − 3x2 √ Câu 46 Tính đạo hàm hàm số y = log4 x − x x x ′ ′ ′ A y′ = B y = C y = D y = √ 2(x2 − 1) ln (x2 − 1)log4 e (x2 − 1) ln x2 − ln Câu 47 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 6a3 B 4a3 C 3a3 D 12a3 Câu 48 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 400π 500π 125π 250π A B C D 9 Câu 49 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a < a x > ay ⇔ x < y x y C Nếu a > a > a ⇔ x < y D Nếu a > a x > ay ⇔ x > y x2 + mx + đạt cực tiểu điểm x = Câu 50 Tìm tất giá trị tham số m để hàm số y = x+1 A m = −1 B m = C m = D Khơng có m - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001