Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có đáy bằng a, AA[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu 1.√Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: B a3 C 3a3 D 3a3 A 3a3 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếux = y = −3 C Nếu < x < π y > − 4π D Nếux > thìy < −15 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường parabol C Đường tròn D Đường elip Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (2; −3; −1) C M ′ (−2; −3; −1) D M ′ (2; 3; 1) Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π B 3π A C 3π D √ 3 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (−2; 0; 0) C (0; 6; 0) D (0; 2; 0) Câu Cho hình S ABCcó cạnh đáy a cạnh bên √ b Thể tích khối chóp là: √ chóp 2 a 3b2 − a2 3ab B VS ABC = A VS ABC = 12 12 q √ √ a2 b2 − 3a2 3a b C VS ABC = D VS ABC = 12 12 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(−3; 1; 1) C C(5; 9; 5) D C(3; 7; 4) x−1 y+2 z Câu 10 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y + 2z = B (P) : x − y − 2z = C (P) : x + y + 2z = D (P) : x − 2y − = R Câu R11 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(2x − 1) + C √ Câu 12 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (1; +∞) B (0; 1) C ( ; +∞) D (0; ) 4 Trang 1/4 Mã đề 001 Câu 13 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 52 B yCD = −2 C yCD = D yCD = 36 R Câu 14 Tính nguyên hàm cos 3xdx 1 D sin 3x + C A −3 sin 3x + C B sin 3x + C C − sin 3x + C 3 Câu 15 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m > C m ≥ D m ≥ −1 Câu 16 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 2π B π C 3π D 4π Câu 17 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π B D √ A 3π C 3π 3 → − Câu 18 Trong không gian với hệ tọa độ Oxyz cho u (2; −2; 1), kết luận sau đúng? −u | = √3 −u | = −u | = −u | = A |→ B |→ C |→ D |→ Câu 19 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x − B y = +1− A y = ln ln 5 ln ln x x C y = −1+ D y = + ln ln 5 ln Câu 20 Kết đúng? R R sin3 x A sin2 x cos x = − + C B sin2 x cos x = −cos2 x sin x + C 3 R R sin x + C D sin2 x cos x = cos2 x sin x + C C sin2 x cos x = Rm dx Câu 21 Cho số thực dươngm Tính I = theo m? x + 3x + m+2 m+2 2m + m+1 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+1 m+2 m+2 Câu 22 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? A R = 29 B R = 21 C R = D R = Câu 23 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (2; −3; −1) C M ′ (2; 3; 1) D M ′ (−2; −3; −1) Câu 24 Hàm số sau đồng biến R? A y = x2 C y = tan x B y = x√4 + 3x2 + √ D y = x2 + x + − x2 − x + √ ′ ′ ′ Câu 25 B C có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: √ 3Cho lăng trụ ABC.A A 3a B a3 C 3a3 D 3a3 x−3 y−6 z−1 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x−1 y z−1 x y−1 z−1 A = = B = = −1 −3 −3 y−1 z−1 x y−1 z−1 x C = = D = = −1 −1 −3 Trang 2/4 Mã đề 001 Câu 27 Tập xác định hàm số y = logπ (3 x − 3) là: A [1; +∞) B (3; +∞) C (1; +∞) D Đáp án khác Câu 28 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5 20 5πa3 5π A V = πa B V = C V = a D V = πa3 6 ′ ′ ′ Câu 29 Lăng trụ ABC.A B C có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 10 3a 13 a 3a 13 A B C D 20 26 13 Câu 30 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác √ ABC quanh trục AB √ πa D πa3 B 3πa3 C πa3 A Câu 31 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x π 3π 3π π A V = B V = C V = D V = 2 Câu 32 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 B −6 C D A (2 ln x + 3)3 : x (2 ln x + 3)4 (2 ln x + 3)2 ln x + (2 ln x + 3)4 A + C B + C C + C D + C 2 8 cos x π Câu 34 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 3π 6π 6π 6π A ln + B C ln + D ln + 5 5 Câu 35 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = πRh + πR2 C S = πRl + πR2 D S = 2πRl + 2πR2 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 36 Trong không gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ → − −v = (1; 14; 15) −u + 3→ −v = (1; 13; 16) A u + 3→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 33 Họ nguyên hàm hàm số f (x) = Câu 37 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x = ay ⇔ x = y C Nếu a > a x > ay ⇔ x < y D Nếu a < a x > ay ⇔ x < y √ Câu 38 Tính đạo hàm hàm số y = log4 x2 − x x x ′ ′ A y′ = B y′ = C y = D y = √ (x − 1)log4 e 2(x2 − 1) ln (x2 − 1) ln x2 − ln Câu 39 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 A 9a B 4a C 6a D 3a3 Trang 3/4 Mã đề 001 Câu 40 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc DB′ Tính giá trị cos α √ hai đường thẳng AC √ 3 B C D A x+cos3x Câu 41 Tính đạo hàm hàm số y = A y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 42 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Câu 43 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc DB′ Tính giá trị cos α √ hai đường thẳng AC √ A B C D ′ ′ ′ Câu 44 Cho hình lăng trụ đứng ABC.A B C có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 A 6a B 4a C 3a D 9a3 Câu 45 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a a 15 a 15 a 15 A B C D 16 Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 Câu 47 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 27 25 23 A B C D 4 4 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C D −4 Câu 49 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ cách hai đường thẳng √ √ 3a 3a 3a 30 a 15 A B C D 2 10 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = 0.√ √ A R = B R = 14 C R = D R = 15 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001