Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Số nghiệm của phương trình 9x + 5 3x − 6 = 0[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 600 C 360 D 450 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 20a3 C 60a3 D 30a3 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; 3; 1) D M ′ (−2; −3; −1) Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? A R = 29 B R = C R = 21 D R = Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = + ln ln 5 ln x x C y = +1− D y = − ln ln 5 ln ln Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; 1; 0) C (0; −5; 0) D (0; 0; 5) Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (−2; 1; 2) C (2; −1; 2) D (−2; −1; 2) Câu Đạo hàm hàm số y = log √2 3x − là: 2 6 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 10 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A −2 ≤ m ≤ B < m < C m = D −2 < m < R Câu R11 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C Câu 12 Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab) = ln a ln b B ln( ) = b ln b C ln(ab2 ) = ln a + (ln b)2 D ln(ab2 ) = ln a + ln b Trang 1/4 Mã đề 001 Câu 13 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A ( ; +∞) B [ ; 2] [22; +∞) C [22; +∞) D ( ; 2] [22; +∞) 4 log √a bằng? Câu 14 √ Cho a > a , Giá trị a A B C D ; y = 0; x = 0; x = Câu 15 Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B − ln − C ln − D − ln A ln + 2 2 R Câu 16 Tính nguyên hàm cos 3xdx 1 A sin 3x + C B − sin 3x + C C −3 sin 3x + C D sin 3x + C 3 R1 √3 7x + 1dx Câu 17 Tính I = 20 45 60 21 A I = B I = C I = D I = 28 28 Câu 18 √ Hình nón có bán kính đáy R, đường sinh l diện tích xung quanh nó√bằng B 2πRl C πRl D 2π l2 − R2 A π l2 − R2 Câu 19 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −15 C m = 13 D m = −2 Câu R20 Công thức sai? A R cos x = sin x + C C sin x = − cos x + C R B R a x = a x ln a + C D e x = e x + C Câu 21 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(20; 15; 7) C C(6; −17; 21) D C(6; 21; 21) A C(8; ; 19) Câu 22 Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − B y = cos x C y = x + 3x + D y = x2 Rm dx Câu 23 Cho số thực dươngm Tính I = theo m? x + 3x + m+1 2m + m+2 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+2 2m + m+1 Câu 24.√ Cho hai số thực a, bthỏa mãn sau sai? √ √ √ √5 a > b > Kết luận √5 − − a A a eb D a > b Câu 25 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (0; 2) B −1 < m < C m ∈ (−1; 2) D m ≥ Câu 26 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (−2; 3; 5) B (−2; 2; 6) C (1; −2; 7) D (4; −6; 8) Trang 2/4 Mã đề 001 Câu 27 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình √ vng √ 3a 10 C 6a D 3a A 3a B Câu 28 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga xn = log x , (x > 0, n , 0) B loga (xy) = loga x.loga y an C loga = a loga a = D loga x có nghĩa với ∀x ∈ R Câu 29 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn ngồi 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 6π(dm3 ) B 54π(dm3 ) C 12π(dm3 ) D 24π(dm3 ) Câu 30 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; 1; 3) B (−1; 1; 1) C (1; −2; −3) D (1; −1; 1) Câu 31 Cho hàm số y = x −3x Tính y′ A y′ = (x2 − 3x)5 x −3x ln C y′ = x −3x ln B y′ = (2x − 3)5 x −3x D y′ = (2x − 3)5 x −3x ln √ Câu 32 Cho hình chóp tứ giác S ABCD có đáy hình vuông cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng√góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt phẳng (S CD) √ a a 10 a B C D a A √ x− x+2 có tất tiệm cận? Câu 33 Đồ thị hàm số y = x2 − A B C D Câu 34 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 29 23 27 A B C D 4 4 Câu 35 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a a 15 a 15 a 15 A B C D 16 Câu 36 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Câu 37 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 3mn + n + A log2 2250 = B log2 2250 = n m 2mn + n + 2mn + n + D log2 2250 = C log2 2250 = n n √ Câu 38 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình vơ nghiệm C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình với x ∈ (4; +∞) Trang 3/4 Mã đề 001 Câu 39 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 40 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 41 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 250π 400π 125π 500π A B C D 9 x2 + mx + đạt cực tiểu điểm x = Câu 42 Tìm tất giá trị tham số m để hàm số y = x+1 A m = B m = −1 C Không có m D m = √ 2x − x2 + Câu 43 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 44 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng B 36080254 đồng C 36080251 đồng D 36080253 đồng Câu 45 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 3a3 C 9a3 D 6a3 A 4a3 Câu 46 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ cách hai đường√thẳng MN S C √ 3a 3a a 15 3a 30 A B C D 10 Câu 47 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − x x x C y′ = A y′ = B y′ = √ D y′ = 2(x − 1) ln (x − 1) ln (x − 1)log4 e x2 − ln −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 50 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = x+cos3x ln - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001