Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm s[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x + 3x có cực tiểu mà khơng có cực đại A m ≤ B m < C m > D m ≥ Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −2 C m = −15 D m = 13 √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? π 10π B V = π C V = D V = A V = 3 + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A −4 < m < B ∀m ∈ R C m < D < m , Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = tan x x−1 C y = x3 − 2x2 + 3x + D y = sin x Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (−2; −1; 2) C (2; −1; 2) D (2; −1; −2) Rm dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + m+1 2m + m+2 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+2 m+1 2m + Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π B 3π C √ D A 3π 3 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ √ a a 15 a A a 15 B C D 3 Câu 10 Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2] B (−∞; 2] C [2; +∞) D (1; 2) Câu 11 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Trang 1/4 Mã đề 001 √ sin 2x Câu 12 Giá trị lớn hàm số y = ( π) R bằng? √ A B π C Câu 13 Gọi S (t) diện tích hình phẳng giới hạn đường y = D π ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B ln + C − ln − D ln − 2 2 Câu 14 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A B − C D 6 Câu 15 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 B (m ) C (m ) D (m ) A 3(m ) x−1 y+2 z Câu 16 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − 2y − = C (P) : x − y + 2z = D (P) : x − y − 2z = Câu 17 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a 3a 2a a A B C √ D √ 5 Câu 18 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + 2ty = + tz = − 4t B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + ty = + 2tz = Câu 19 Hàm số sau khơng có cực trị? A y = cos x C y = x2 B y = x3 − 6x2 + 12x − D y = x4 + 3x2 + Câu R20 Công thức sai? A R a x = a x ln a + C C e x = e x + C R B R sin x = − cos x + C D cos x = sin x + C Câu 21 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; 21; 21) B C(8; ; 19) C C(6; −17; 21) D C(20; 15; 7) Câu 22 Cho mãn a > b > Kết luận sau sai? √ √ √ √ √5 hai số thực a, bthỏa √5 a b − − A a < b B e > e C a b −u (2; −2; 1), kết luận sau đúng? Câu 23 Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = √3 −u | = A |→ B |→ C |→ D |→ Câu 24 √ R, đường sinh l diện tích xung quanh √ Hình nón có bán kính đáy 2 A π l − R B 2π l2 − R2 C πRl D 2πRl Câu 25 √ Hàm số sau√đây đồng biến R? A y = x2 + x + − x2 − x + C y = x2 B y = x4 + 3x2 + D y = tan x Trang 2/4 Mã đề 001 2x − Câu 26 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±2 B m = ±3 C m = ± D m = ±1 Câu 27 Họ nguyên hàm hàm số y = (x − 1)e x là: A xe x + C B (x − 1)e x + C C (x − 2)e x + C Câu 28 Cho hàm số y = x −3x Tính y′ A y′ = x −3x ln C y′ = (x2 − 3x)5 x −3x ln D xe x−1 + C B y′ = (2x − 3)5 x −3x ln D y′ = (2x − 3)5 x −3x Câu 29 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 2,075 B 33,2 C 8,9 D 11 Câu 30 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D n e R ln x dx, (n > 1) Câu 31 Tính tích phân I = x 1 1 A I = B I = C I = D I = n + n+1 n n−1 Câu 32 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5 5π 20 5πa3 5 πa B V = πa C V = a D V = A V = 6 x2 + 2x Câu 33 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A B −2 C 15 D Câu 34 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = + 2t x = − 2t x = −1 + 2t x = + 2t y = −2 + 3t y = −2 + 3t y = + 3t y = −2 − 3t A B C D z = − 5t z = + 5t z = −4 − 5t z = − 5t √ Câu 35 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = √ C y′ = D y′ = (x − 1) ln 2(x − 1) ln (x − 1)log4 e x2 − ln Câu 36 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc hai đường thẳng AC √ DB′ Tính giá trị cos α.√ A B C D 2 x2 + mx + Câu 37 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A Khơng có m B m = C m = −1 D m = x Câu 38 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 128 64 32 d Câu 39 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C √ = S M = a Tính khoảng √ cách từ S đến mặt phẳng (ABC) A a B a C a D 2a Trang 3/4 Mã đề 001 Câu 40 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ πa2 17 πa2 17 πa2 15 πa2 17 B C D A Câu 41 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2a+2b+3c C P = 2a+b+c D P = 2abc Câu 42 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B m > −2 C m < D −4 ≤ m ≤ −1 x + mx + Câu 43 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A Khơng có m B m = C m = −1 D m = Câu 44 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Câu 46 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a B C D A 2 Câu 47 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ → − → − → − → C u + v = (1; 13; 16) D u + 3−v = (1; 14; 15) Câu 49 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 50 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B C 1 R3 R2 R3 1 R3 R2 R3 D |x2 − 2x|dx = (x2 − 2x)dx + R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx |x2 − 2x|dx = − (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001