Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết lu[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho mãn a > b > Kết luận√nào sau√ sai? √ √ √5 hai số thực a, bthỏa √5 a A a < b B e > eb C a− < b− D a > b Câu Cho < a , 1; < x , Đẳng thức sau sai? B aloga x = x A loga2 x = loga x C loga (x − 2)2 = 2loga (x − 2) D loga x2 = 2loga x Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (−2; 3; 1) C M ′ (2; −3; −1) D M ′ (−2; −3; −1) Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ -ln3; +∞) C S = (−∞; ln3) D S = [ 0; +∞) Câu Tính I = R1 √3 7x + 1dx 45 60 20 21 B I = C I = D I = 28 28 −x Câu Tìm tất giá trị tham số m để hàm số y = xe + mx đồng biến R A m ≥ e−2 B m > e2 C m > 2e D m > A I = Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m ≤ C m ≥ D m > Câu Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = x4 + 3x2 + B y = x2 D y = cos x Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền 2a Tính thể tích khối nón √ √ 3 π 2.a 4π 2.a3 2π.a3 π.a B C D A 3 3 Câu 10 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số đồng biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (1; +∞) D Hàm số nghịch biến khoảng (−∞; −3) Câu 11 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có√diện tích lớn bằng? √ √ 3 3 2 A (m ) B 3(m ) C (m ) D (m ) Câu 12 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ C m > D m ≥ −1 R Câu R13 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = 2F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C Trang 1/4 Mã đề 001 Câu 14 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A π B C D −1 Câu 15 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A − B C D 6 √ ′ ′ ′ ′ Câu 16 Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C a D 2 Câu 17 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; 1; 0) C (0; 5; 0) D (0; −5; 0) Câu 18 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ 3a b a2 3b2 − a2 A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 3ab C VS ABC = D VS ABC = 12 12 Rm dx theo m? Câu 19 Cho số thực dươngm Tính I = x + 3x + 2m + m+2 m+1 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 2m + m+2 m+1 Câu 20 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 −x Câu 21 Tìm tất giá trị tham số m để hàm số y = xe + mx đồng biến R? A m ≥ e−2 B m > C m > 2e D m > e2 Câu 22 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến R D Hàm số đồng biến R Câu 23 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = tan x B y = x−1 C y = x − 2x + 3x + D y = sin x Câu 24 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(8; ; 19) B C(20; 15; 7) C C(6; −17; 21) D C(6; 21; 21) Câu 25 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 2πR3 C 6πR3 D πR3 Câu 26 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 + − 4x B 2x3 − 4x4 C x3 − x4 + 2x D x3 + − 4x + 4 x−3 y−6 z−1 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: Trang 2/4 Mã đề 001 x y−1 z−1 = = −1 −3 x y−1 z−1 C = = −3 A x−1 y z−1 = = −1 −3 x y−1 z−1 D = = −1 B √3 a2 b ) Câu 28 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( c A − B C D 3 √ Câu 29 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích khối chóp S ABC √ √ √ √ a3 2a3 a3 3 A a B C D 3 Câu 30 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x 3π π π 3π A V = B V = C V = D V = Câu 31 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ B C D A Câu 32 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = [−1; +∞) B S = (−4; −1) C S = (−1; +∞) D S = (−∞; −4) ∪ (−1; +∞) Câu 33 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 47m B 48m C 49m D 50m Câu 34 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B −4 ≤ m ≤ −1 C −3 ≤ m ≤ D m > −2 √ 2x − x2 + Câu 35 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 36 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 37 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 25 23 27 A B C D 4 4 Câu 38 Hàm số hàm số sau đồng biến R 4x + A y = −x3 − x2 − 5x B y = x+2 C y = x4 + 3x2 D y = x3 + 3x2 + 6x − √ Câu 39 Tính đạo hàm hàm số y = log4 x2 − 1 x x x A y′ = √ B y′ = C y′ = D y′ = (x − 1) ln (x − 1)log4 e 2(x − 1) ln x2 − ln Câu 40 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = x+cos3x ln Trang 3/4 Mã đề 001 Câu 41 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a B C D A 3 Câu 42 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu R43 Chọn mệnh đề mệnh đề sau: R A sin xdx = cos x + C B x dx =5 x + C R R (2x + 1)3 e2x C (2x + 1)2 dx = + C D e2x dx = +C d Câu 44 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ cạnh BC, S A = S C √ B a C a D 2a A a Câu 45 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m > m < − C m < −2 D m > m < −1 Câu 46 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = 2loga e C P = + 2(ln a)2 D P = ln a r 3x + Câu 47 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) B D = (−1; 4) C D = (1; +∞) D D = (−∞; −1] ∪ (1; +∞) Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080254 đồng C 36080251 đồng D 36080255 đồng Câu 49 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B m < C m > −2 D −4 ≤ m ≤ −1 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ → − → − −u + 3→ −v = (2; 14; 14) A u + v = (3; 14; 16) B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001