Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có vô số đường tiệm[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = tan x x−1 C y = x3 − 2x2 + 3x + D y = sin x Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu Bất đẳng thức sau đúng? √ √ e π −e A 3√ > 2−e B ( − 1) < ( − 1) √ π e C ( + 1) > ( + 1) D 3π < 2π Câu Cho hai số thực a, bthỏa√ mãn √a > b > Kết luận√nào sau√ sai? √5 √ A ea > eb B a > b C a− < b− D a < b Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; −5; 0) C (0; 1; 0) D (0; 0; 5) Câu Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh √ A 2πRl B πRl C π l2 − R2 D 2π l2 − R2 Câu Kết đúng? R R sin3 x + C A sin2 x cos x = cos2 x sin x + C B sin2 x cos x = − R R sin3 x + C D sin2 x cos x = −cos2 x sin x + C C sin2 x cos x = Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A −6 B C D √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ √ a 15 a a A a 15 B C D 3 √ Câu 10 Đạo hàm hàm số y = log 3x − là: 6 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln √ x Câu 11 Tìm nghiệm phương trình x = ( 3) A x = B x = −1 C x = D x = Câu 12 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A −1 B π C D Câu 13 Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + (ln b)2 B ln(ab2 ) = ln a + ln b a ln a C ln(ab) = ln a ln b D ln( ) = b ln b Trang 1/4 Mã đề 001 Câu 14 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A m = B < m < C −2 < m < D −2 ≤ m ≤ Câu 15 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 2π C 3π D 4π y+2 z x−1 = = Viết phương Câu 16 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − 2y − = C (P) : x − y − 2z = D (P) : x − y + 2z = Câu 17 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ 3ab 3a b B VS ABC = A VS ABC = 12 12 q √ √ a2 b2 − 3a2 a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 R1 √3 Câu 18 Tính I = 7x + 1dx 20 21 60 45 A I = B I = C I = D I = 28 28 p Câu 19 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếu < x < π y > − 4π D Nếux > thìy < −15 Câu 20 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số nghịch biến R C Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu 21 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 2πR3 C 4πR3 D πR3 Câu 22 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (2; −1; 2) C (−2; −1; 2) D (2; −1; −2) Rm dx Câu 23 Cho số thực dươngm Tính I = theo m? x + 3x + m+2 2m + m+2 m+1 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+1 m+2 2m + m+2 + 2x Câu 24 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B −4 < m < C < m , D ∀m ∈ R −u (2; −2; 1), kết luận sau đúng? Câu 25 Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu 26 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 8,9 B 2,075 C 33,2 D 11 Trang 2/4 Mã đề 001 Câu 27 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = [−1; +∞) B S = (−4; −1) C S = (−∞; −4) ∪ (−1; +∞) D S = (−1; +∞) Câu 28 Tìm tất giá trị tham số m để hàm số y = (m + 2) biến R A m < −3 B m ≤ −2 C m ≥ −8 x3 − (m + 2)x2 + (m − 8)x + m5 nghịch D m ≤ Câu 29 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (4; −6; 8) B (1; −2; 7) C (−2; 3; 5) D (−2; 2; 6) Câu 30 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 47m B 50m C 48m D 49m Câu 31 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x π 3π π 3π B V = C V = D V = A V = 2 Câu 32 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ h √ √ √ 2π − π− 2π − 3 A B C D 12 12 Câu 33 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn ngồi 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 24π(dm3 ) B 12π(dm3 ) C 54π(dm3 ) D 6π(dm3 ) Câu 34 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc hai đường thẳng AC √ DB′ Tính giá trị cos α.√ B C D A Câu 35 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 9a3 B 4a3 C 3a3 D 6a3 Câu 36 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 3 2 Câu 37 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = − 2t x = + 2t x = + 2t x = −1 + 2t y = −2 + 3t y = −2 − 3t y = −2 + 3t y = + 3t A B C D z = − 5t z = − 5t z = −4 − 5t z = + 5t Trang 3/4 Mã đề 001 Câu 38 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 39 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 40 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = C m = m = −10 D m = m = −16 Câu 41 Chọn mệnh đề mệnh đề sau: R R e2x A x dx =5 x + C B e2x dx = + C R R (2x + 1)3 C sin xdx = cos x + C D (2x + 1)2 dx = +C Câu 42 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 43 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D √ 2x − x + có số đường tiệm cận đứng là: Câu 44 Đồ thị hàm số y = x2 − A B C D Câu 45 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = Câu 47 Chọn mệnh đề mệnh đề sau: R R e2x (2x + 1)3 + C B e2x dx = +C A (2x + 1)2 dx = R R C x dx =5 x + C D sin xdx = cos x + C √ Câu 48 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình với x ∈ (4; +∞) Câu 49 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 27 23 25 29 A B C D 4 4 Câu 50 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa2 15 πa 17 A B C D Trang 4/4 Mã đề 001