Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Hàm số nào sau đây không có cực trị? A y = x2[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Hàm số sau khơng có cực trị? A y = x2 C y = cos x B y = x4 + 3x2 + D y = x3 − 6x2 + 12x − Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x3 − 2x2 + 3x + C y = −x + 3x − D y = x2 − 2x + Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 Câu Kết đúng? R R sin3 x + C B sin2 x cos x = −cos2 x sin x + C A sin x cos x = − R R sin3 x 2 C sin x cos x = cos x sin x + C D sin x cos x = + C Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số đồng biến R C Hàm số nghịch biến R D Hàm số nghịch biến (0; +∞) Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a a 3a 5a A √ B C √ D 5 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; ln3) C S = [ 0; +∞) D S = (−∞; 2) √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Có tiệm cận ngang khơng có tiệm cận đứng C Có tiệm cận ngang tiệm cận đứng D Khơng có tiệm cận Câu 10 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 2 2 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x + 2) + (y + 1) + (z − 1) = Câu 11 Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln( ) = B ln(ab) = ln a ln b b ln b C ln(ab2 ) = ln a + ln b D ln(ab2 ) = ln a + (ln b)2 Trang 1/4 Mã đề 001 Câu 12 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có√diện tích lớn bằng? √ √ 3 3 (m ) B (m ) C 3(m2 ) A D (m2 ) R Câu 13 Tính nguyên hàm cos 3xdx 1 A sin 3x + C B − sin 3x + C C sin 3x + C D −3 sin 3x + C 3 Câu 14 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π B V = C V = D V = A V = 3 5 Câu 15 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu 16 Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2) B [2; +∞) C (1; 2] D (−∞; 2] Câu 17 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 3a a 5a 2a C A B √ D √ 5 √ ′ ′ ′ ′ Câu 18 B C có đáy a, AA = 3a Thể tích khối√lăng trụ cho là: √ 3Cho lăng trụ ABC.A B a C 3a3 D 3a3 A 3a Câu 19 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường hypebol C Đường parabol D Đường elip x π π π Câu 20 Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π ln π π ln π π ln π π ln π B F( ) = − C F( ) = + D F( ) = + A F( ) = − 4 4 4 −u (2; −2; 1), kết luận sau đúng? Câu 21 Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu 22 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x +1− B y = + A y = ln ln 5 ln x x C y = − D y = −1+ ln ln 5 ln ln Câu 23 Hình nón có bán kính √ đáy R, đường sinh l diện tích xung quanh nó√bằng A πRl B π l2 − R2 C 2πRl D 2π l2 − R2 Câu 24 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; 21; 21) B C(8; ; 19) C C(20; 15; 7) D C(6; −17; 21) Câu 25 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A B 3π C √ D 3π 3 Trang 2/4 Mã đề 001 Câu 26 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hoành độ nhỏ A S = (−∞; −4) ∪ (−1; +∞) B S = (−1; +∞) C S = (−4; −1) D S = [−1; +∞) Câu 27 Người ta cần cắt tôn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 4a2 b 2a2 b 4a2 b B √ C √ D √ A √ 3π 3π 2π 2π Câu 28 Đồ thị hình bên đồ thị hàm số nào? −2x + 2x − 2x + 2x + A y = B y = C y = D y = 1−x x−1 x+1 x+1 Câu 29 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 Câu 30 Nguyên hàm F(x) hàm số f (x) = 2x + x − thỏa mãn điều kiện F(0) = x4 x4 − 4x + B 2x3 − 4x4 C x3 + − 4x D x3 − x4 + 2x A x3 + 4 x −2x +3x+1 Câu 31 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) B Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) C Hàm số đồng biến khoảng (−∞; 1) (3; +∞) D Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) Câu 32 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 43.091.358 đồng B 45.188.656 đồng C 48.621.980 đồng D 46.538667 đồng x−3 y−6 z−1 = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 A = = B = = −1 −1 −3 y z−1 x y−1 z−1 x−1 = = D = = C −1 −3 −3 Câu 34 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = |x − 2x|dx − |x2 − 2x|dx Câu 33 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : B R3 |x2 − 2x|dx = − C D R3 R2 (x2 − 2x)dx + R2 |x2 − 2x|dx = (x2 − 2x)dx + 1 R2 R3 (x2 − 2x)dx R3 R3 |x2 − 2x|dx = (x2 − 2x)dx − R3 (x2 − 2x)dx (x2 − 2x)dx √ Câu 35 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = (x − 1) ln 2(x − 1) ln (x − 1)log4 e D y′ = √ x2 − ln Trang 3/4 Mã đề 001 Câu 36 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 6a3 B 12a3 C 4a3 D 3a3 3x Câu 37 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C m = D Không tồn m cos x π Câu 38 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 3π 6π B C ln + D ln + A ln + 5 5 √ Câu 39 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình có nghiệm thuộc khoảng (−∞; 1) B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ (4; +∞) R ax + b 2x Câu 40 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 41 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 21 10 16 10 31 11 17 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 42 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 43 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = + 2(ln a)2 B P = 2loga e C P = D P = ln a R ax + b 2x Câu 44 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 45 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B m < C m > −2 D −4 ≤ m ≤ −1 Câu 46 Hàm số hàm số sau đồng biến R 4x + A y = B y = x3 + 3x2 + 6x − x+2 C y = −x3 − x2 − 5x D y = x4 + 3x2 Câu 47 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 23 27 25 A B C D 4 4 Câu 48 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 Câu 49 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 6π C 12π D 8π Trang 4/4 Mã đề 001