Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2;−[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; −2; 0) C (0; 6; 0) D (0; 2; 0) √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? π 10π C V = D V = A V = π B V = 3 ′ ′ ′ ′ Câu Cho hình lập phương ABCD.A B C D Tính góc hai đường thẳng AC BC ′ A 300 B 360 C 450 D 600 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x − B y = + A y = ln ln 5 ln x x C y = +1− D y = −1+ ln ln 5 ln ln Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B m ≥ C −1 < m < D m ∈ (0; 2) Câu Hàm số sau đồng biến R? A y = x2 B y = tan √ √ x C y = x + 3x + D y = x2 + x + − x2 − x + Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 30a3 C 60a3 D 20a3 π π π x F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = + C F( ) = + D F( ) = − 4 4 4 Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A m = B < m < C −2 ≤ m ≤ D −2 < m < Câu 10 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [ ; 2] [22; +∞) B ( ; +∞) C ( ; 2] [22; +∞) D [22; +∞) 4 Câu 11 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = B f (−1) = −3 C f (−1) = −5 D f (−1) = −1 Câu 12 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD √ có chiều cao chiều√cao tứ diện √ √ 2π 2.a2 π 3.a2 π 2.a2 A π 3.a B C D 3 Trang 1/4 Mã đề 001 Câu 13 Cho a, b hai số thực dương Mệnh đề đúng? ln a a B ln(ab) = ln a ln b A ln( ) = b ln b C ln(ab2 ) = ln a + ln b D ln(ab2 ) = ln a + (ln b)2 √ x Câu 14 Tìm nghiệm phương trình x = ( 3) A x = B x = −1 C x = D x = Câu 15 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 C m < D Không tồn m A m < B < m < 3 √ Câu 16 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; ) B ( ; +∞) C (0; 1) D (1; +∞) 4 Câu 17 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 Câu 18 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 1; 0) B (0; −5; 0) C (0; 5; 0) D (0; 0; 5) + 2x Câu 19 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A ∀m ∈ R B m < C < m , D −4 < m < Câu 20 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 C C(20; 15; 7) D C(6; 21; 21) A C(6; −17; 21) B C(8; ; 19) Câu 21 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = +1− B y = + ln ln 5 ln x x C y = − D y = −1+ ln ln 5 ln ln Câu 22 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (2; 3; 1) C M ′ (−2; 3; 1) D M ′ (2; −3; −1) Câu 23 Kết đúng? R sin3 x A sin2 x cos x = − + C R C sin2 x cos x = cos2 x sin x + C sin3 x + C R D sin2 x cos x = −cos2 x sin x + C B R sin2 x cos x = Câu 24 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 6; 0) B (−2; 0; 0) C (0; −2; 0) D (0; 2; 0) Câu 25 Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh √ 2 A πRl B 2π l − R C 2πRl D π l2 − R2 Câu 26 Cho hàm số y = x −3x Tính y′ A y′ = (2x − 3)5 x −3x C y′ = x −3x ln B y′ = (2x − 3)5 x −3x ln D y′ = (x2 − 3x)5 x −3x ln Trang 2/4 Mã đề 001 Câu 27 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (−1; 1; 1) B (1; −2; −3) C (1; 1; 3) D (1; −1; 1) Câu 28 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−4; −1) B S = [−1; +∞) C S = (−∞; −4) ∪ (−1; +∞) D S = (−1; +∞) Câu 29 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga x có nghĩa với ∀x ∈ R B loga xn = log x , (x > 0, n , 0) an D loga (xy) = loga x.loga y √ Câu 30 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a 10 a a B a D C A Câu 31 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 Câu 32 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 6π(dm3 ) B 54π(dm3 ) C 24π(dm3 ) D 12π(dm3 ) C loga = a loga a = Câu 33 Đồ thị hàm số sau có điểm cực trị: A y = 2x4 + 4x2 + B y = x4 − 2x2 − C y = −x4 − 2x2 − D y = x4 + 2x2 − Câu 34 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −4 D −2 Câu 35 Chọn mệnh đề mệnh đề sau: R R e2x A e2x dx = + C B x dx =5 x + C R R (2x + 1)3 D (2x + 1)2 dx = C sin xdx = cos x + C +C Câu 36 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = − 2t x = + 2t x = + 2t x = −1 + 2t y = −2 + 3t y = −2 + 3t y = −2 − 3t y = + 3t B C D A z = + 5t z = − 5t z = − 5t z = −4 − 5t Câu 37 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = 2πRl + 2πR2 C S = πRl + πR2 D S = πRl + 2πR2 3x Câu 38 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B Không tồn m C m = D m = −2 Trang 3/4 Mã đề 001 Câu 39 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 40 Hàm số hàm số sau đồng biến R A y = x3 + 3x2 + 6x − B y = −x3 − x2 − 5x 4x + D y = x4 + 3x2 C y = x+2 Câu 41 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m > −2 B −3 ≤ m ≤ C −4 ≤ m ≤ −1 D m < Câu 42 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vuông góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 Câu 43 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 44 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln D y′ = x+cos3x ln Câu 45 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối √ √ √ chóp S ABC √ 3 3 a 15 a a 15 a 15 B C D A 16 Câu 46 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = πRh + πR2 C S = πRl + πR2 D S = 2πRl + 2πR2 Câu 47 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa 15 πa2 17 B C D A 4 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = x2 Câu 49 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 64 32 128 Câu 50 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B C 1 R3 R2 R3 1 R3 R2 D R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx = − |x2 − 2x|dx R3 (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx - - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 001