Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị giới hạn lim x→−1 (x2 − x + 7) bằng? A 9 B 7 C 0 D 5 Câu 2 Tính lim x→−∞ x + 1 6x − 2 bằng A 1 B 1[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có 10 trang) Thời gian làm bài: 90 phút Mã đề thi Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B x+1 x→−∞ 6x − B C D Câu Tính lim A C D Câu Cho hình chóp S ABC có đáy ABC tam giác cạnh a, biết S A ⊥ (ABC) (S BC) hợp với đáy (ABC) góc 60◦ Thể tích√khối chóp S ABC √ √ a3 a3 a3 a3 B C D A 4 12 Câu [3-1211h] Cho khối chóp S ABC có cạnh bên a mặt bên hợp với đáy góc 45◦ Tính thể√tích khối chóp S ABC√ theo a √ a3 15 a3 a3 a3 15 A B C D 25 25 Câu [1] Cho a số thực dương tùy ý khác Mệnh đề đúng? 1 A log2 a = loga B log2 a = C log2 a = D log2 a = − loga log2 a loga Câu [2D1-3] Tìm giá trị tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − đồng biến khoảng có độ dài lớn 5 B − < m < C m ≤ D m ≥ A m > − 4 Câu [2D1-3] Tìm giá trị tham số m để hàm số y = x3 − mx2 + 3x + đồng biến R A −3 ≤ m ≤ B −2 ≤ m ≤ C m ≥ D m ≤ Câu Cho z √ nghiệm phương trình x2 + x + = Tính P = z4 + 2z3 − z √ −1 + i −1 − i A P = B P = C P = 2i D P = 2 cos n + sin n Câu Tính lim n2 + A −∞ B C D +∞ Câu 10 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 3) C (2; 4; 6) D (2; 4; 4) Câu 11 Khối đa diện loại {3; 4} có số mặt A 10 B C 12 D Câu 12 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 abc b2 + c2 c a2 + b2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 13 Tính lim x→1 A x3 − x−1 B C −∞ D +∞ Trang 1/10 Mã đề Câu 14 Khối đa diện loại {3; 5} có số mặt A B 30 C 12 D 20 Câu 15 Khối đa diện loại {3; 3} có tên gọi gì? A Khối bát diện B Khối 12 mặt C Khối lập phương D Khối tứ diện Câu 16 Phát biểu sau sai? A lim k = n C lim un = c (un = c số) B lim qn = (|q| > 1) D lim = n Câu 17 Giá trị cực đại hàm số y = x − 3x + A −1 B C D 2 x − 3x + Câu 18 Hàm số y = đạt cực đại x−2 A x = B x = C x = D x = 2n + Câu 19 Tìm giới hạn lim n+1 A B C D Câu 20 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 1% năm Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau năm người thu (cả vốn lẫn lãi) gấp đơi số tiền gửi ban đầu, giả định thời gian lãi suất khơng đổi người khơng rút tiền ra? A 11 năm B 10 năm C 12 năm D 13 năm Câu 21 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết không rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 70, 128 triệu đồng B 50, triệu đồng C 20, 128 triệu đồng D 3, triệu đồng Câu 22 [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + Tìm giá trị tham số m để hàm số nghịch biến R A (−∞; −2] ∪ [−1; +∞) B (−∞; −2) ∪ (−1; +∞) C −2 < m < −1 D −2 ≤ m ≤ −1 Câu 23 [2]√Tìm m để giá trị lớn hàm số y = 2x3 + (m2 + 1)2 x [0; 1] √ A m = ± B m = ±1 C m = ±3 D m = ± Câu 24 Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ 0 ABC.A0 B √ C √ a a3 a3 A B a C D Câu 25 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a A B C a D 2 Câu 26 √ thức |z − + 3i| = Tìm |z − − i| √ [4-1245d] Trong tất số phức z thỏa mãn hệ A 10 B C D Câu 27 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 8a a 5a A B C D 9 9 Trang 2/10 Mã đề Câu 28 [4-c] Xét số thực dương x, y thỏa mãn x + 2y = Khi đó, giá trị lớn biểu thức P = (2x2 + y)(2y2 + x) + 9xy 27 A 18 B 12 C 27 D Câu 29 [3-1212h] Cho hình lập phương ABCD.A0 B0C D0 , gọi E điểm đối xứng với A0 qua A, gọi G la trọng tâm tam giác EA0C Tính tỉ số thể tích k khối tứ diện GA0 B0C với khối lập phương ABCD.A0 B0C D0 1 1 B k = C k = D k = A k = 18 15 √ √ 4n2 + − n + Câu 30 Tính lim 2n − 3 A B +∞ C D Câu 31 Tổng diện tích mặt khối lập phương 96cm2 Thể tích khối lập phương là: A 91cm3 B 84cm3 C 48cm3 D 64cm3 Câu 32 Xác định phần ảo số phức z = (2 + 3i)(2 − 3i) A B C 13 D Không tồn d = 60◦ Đường chéo Câu 33 Cho lăng trụ đứng ABC.A0 B0C có đáy tam giác vuông A, AC = a, ACB 0 0 ◦ BC mặt bên (BCC B ) tạo với mặt phẳng (AA C C) góc 30 Thể tích khối lăng trụ ABC.A0 B0C √ √ √ √ 4a3 a3 2a3 C D B A a 3 Câu 34 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln 10 B ln 12 C ln 14 D ln t Câu 35 [4] Xét hàm số f (t) = t , với m tham số thực Gọi S tập tất giá trị m cho + m2 f (x) + f (y) = 1, với số thực x, y thỏa mãn e x+y ≤ e(x + y) Tìm số phần tử S A B Vô số C D 2n + Câu 36 Tính giới hạn lim 3n + B C D A 2 Câu 37 Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận tháng người phải trả cho ngân hàng triệu đồng trả tháng hết nợ (tháng cuối trả triệu) Hỏi sau tháng người trả hết nợ ngân hàng A 22 B 21 C 24 D 23 Câu 38 [2-c] Cho a = log27 5, b = log8 7, c = log2 Khi log12 35 3b + 2ac 3b + 3ac 3b + 3ac A B C c+2 c+2 c+1 Câu 39 Khối đa diện loại {5; 3} có số đỉnh A 30 B 20 C D 3b + 2ac c+3 D 12 x+2 Câu 40 Có giá trị nguyên tham số m để hàm số y = đồng biến khoảng x + 5m (−∞; −10)? A B C D Vô số √3 Câu 41 [1-c] Cho a số thực dương Giá trị biểu thức a : a2 5 A a B a C a D a Trang 3/10 Mã đề Câu 42 Hình hộp chữ nhật có ba kích thước khác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 43 [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép ổn định tháng lĩnh 61.758.000 Hỏi lãi suất ngân hàng tháng bao nhiêu? Biết lãi suất không thay đổi thời gian gửi A 0, 7% B 0, 8% C 0, 6% D 0, 5% Câu 44 Dãy số có giới hạn 0? !n n3 − 3n B un = A un = n+1 C un = n − 4n !n −2 D un = √ Câu 45 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị ngun dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C 63 D Vơ số x+1 Câu 46 Tính lim x→+∞ 4x + 1 A B C D Z Câu 47 Cho hàm số f (x) liên tục đoạn [0; 1] thỏa mãn f (x) = 6x f (x )− √ Tính f (x)dx 3x + A B C D −1 Câu 48 Khẳng định sau đúng? A Hình lăng trụ đứng có đáy đa giác hình lăng trụ B Hình lăng trụ đứng hình lăng trụ C Hình lăng trụ có đáy đa giác hình lăng trụ D Hình lăng trụ tứ giác hình lập phương Câu 49 Cho hình chóp S ABC có đáy ABC tam giác vuông cân B với AC = a, biết S A ⊥ (ABC) S B hợp √ với đáy góc 60◦ Thể √ tích khối chóp S ABC √ √ 3 a a a3 a3 A B C D 24 24 48 Câu 50 [2-c] Giá trị nhỏ hàm số y = (x2 − 2)e2x đoạn [−1; 2] A −2e2 B 2e2 C −e2 D 2e4 Câu 51 Khối đa diện thuộc loại {4; 3} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt Câu 52 Giá √ trị cực đại hàm số y = √ x − 3x − 3x + √ A + B −3 − C −3 + √ D − Câu 53 [2] Số lượng loài vi khuẩn sau t xấp xỉ đẳng thức Qt = Q0 e0,195t , Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5.000 sau giờ, số lượng vi khuẩn đạt 100.000 con? A 3, 55 B 24 C 15, 36 D 20 Câu 54 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vuông cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 A B C D 12 12 Câu 55 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B 2a C a D Trang 4/10 Mã đề Câu 56 Tìm m để hàm số y = mx3 + 3x2 + 12x + đạt cực đại x = A m = −1 B m = −2 C m = −3 √ x2 + 3x + Câu 57 Tính giới hạn lim x→−∞ 4x − 1 A B C − 4 D m = D Câu 58 [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = z1 thỏa mãn |z1 − − i| = Diện tích hình phẳng giới hạn hai quỹ tích biểu diễn hai số phức z z1 gần giá trị nhất? A 0, B 0, C 0, D 0, − 2n Câu 59 [1] Tính lim bằng? 3n + 1 A B C D − Câu 60 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a A 2a B a C D !4x !2−x ≤ Câu 61 Tập số x thỏa mãn # " ! # " ! 2 2 A −∞; ; +∞ B − ; +∞ C −∞; D 3 a + , với a, b ∈ Z Giá trị a + b b ln A B C D x x+1 x−2 x−1 + + + y = |x + 1| − x − m (m tham Câu 63 [4-1212d] Cho hai hàm số y = x−1 x x+1 x+2 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (−3; +∞) B (−∞; −3] C [−3; +∞) D (−∞; −3) Câu 62 [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = Câu 64 [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn lẫn lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi suất không thay đổi? A 102.423.000 B 102.016.000 C 102.016.000 D 102.424.000 − n2 bằng? Câu 65 [1] Tính lim 2n + 1 A B − 2 C D Câu 66 Hàm số sau khơng có cực trị A y = x4 − 2x + B y = x3 − 3x C y = x−2 2x + 1 D y = x + x Câu 67 Tập hợp điểm mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 số ảo A Trục thực B Đường phân giác góc phần tư thứ C Hai đường phân giác y = x y = −x góc tọa độ D Trục ảo Trang 5/10 Mã đề Câu 68 √ Tìm giá trị lớn của√hàm số y = A B √ √ x+3+ 6−x C D + √ x Câu 69 Tính diện tích hình phẳng giới hạn đường √ y = xe , y = 0, x = 3 A B C D 2 Câu 70 [1] Giá trị biểu thức log √3 10 1 B − C −3 D A 3 Câu 71 Cho hình chóp S ABCD có √ đáy ABCD hình chữ nhật AD = 2a, AB = a Gọi H trung điểm AD, biết a Thể tích khối chóp √ S ABCD √ S H ⊥ (ABCD), S A = 3 4a 2a 2a 4a3 A B C D 3 3 Câu 72 Tổng diện tích mặt khối lập phương 54cm2 Thể tích khối lập phương là: A 64cm3 B 27cm3 C 72cm3 D 46cm3 Câu 73 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e + B xy = e − C xy0 = ey + D xy0 = −ey − 1 Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = −ey − B xy0 = −ey + C xy0 = ey + D xy0 = ey − π Câu 75 Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại điểm x = , x = π Tính giá √ trị biểu √ thức T = a + b √ A T = B T = C T = 3 + D T = x−2 Câu 76 Tính lim x→+∞ x + A B C −3 D − Câu 74 [3-12217d] Cho hàm số y = ln 0 0 Câu 77.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 78 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z B f (x)dx = f (x) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 79 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D log 2x Câu 80 [3-1229d] Đạo hàm hàm số y = x2 1 − log 2x − ln 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 2x ln 10 x x ln 10 2x3 ln 10 Trang 6/10 Mã đề ! 3n + 2 Câu 81 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 82 Thể tích khối chóp có diện tích đáy S chiều cao h A V = S h B V = 3S h C V = S h Câu 83 Khối đa diện loại {3; 4} có số đỉnh A B D V = S h C D 10 tan x + m Câu 84 [2D1-3] Tìm giá trị thực tham số m để hàm số y = nghịch biến khoảng m tan x + π 0; A (1; +∞) B (−∞; 0] ∪ (1; +∞) C (−∞; −1) ∪ (1; +∞) D [0; +∞) Câu 85 Điểm cực đại đồ thị hàm số y = 2x3 − 3x2 − A (1; −3) B (0; −2) C (2; 2) Câu 86 Hàm số y = x + A −1 có giá trị cực đại x B C −2 D (−1; −7) D Câu 87 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 88 √ Biểu thức sau khơng √ có nghĩa −3 A −1 B (− 2) C (−1)−1 D 0−1 Câu 89 Khối đa diện loại {5; 3} có tên gọi gì? A Khối 20 mặt B Khối tứ diện C Khối 12 mặt D Khối bát diện − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 11 + 19 11 − 19 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 x−3 x−2 x−1 x Câu 91 [4-1213d] Cho hai hàm số y = + + + y = |x + 2| − x − m (m tham x−2 x−1 x x+1 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (2; +∞) B (−∞; 2) C [2; +∞) D (−∞; 2] Câu 90 [12210d] Xét số thực dương x, y thỏa mãn log3 Câu 92 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Trang 7/10 Mã đề Câu 93 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B dx = ln |x| + C, C số α+1 Z Z x dx = x + C, C số C D Câu 94 [1] Giá trị biểu thức 9log3 12 A B Câu 95 Phát biểu sau sai? A lim √ = n 0dx = C, C số C 144 D 24 B lim un = c (Với un = c số) C lim qn = với |q| > D lim = với k > nk Câu 96 Tìm giá trị lớn chất hàm số y = x3 − 2x2 − 4x + đoạn [1; 3] 67 A B −7 C −4 D −2 27 Câu 97 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) Z Câu 98 Cho I = B Chỉ có (I) x √ dx = 4+2 x+1 trị P = a + b + c + d bằng? A P = 16 B P = C Cả hai câu sai D Cả hai câu a a + b ln + c ln d, biết a, b, c, d ∈ Z phân số tối giản Giá d d C P = −2 D P = 28 Câu 99 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết khơng rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất khơng thay đổi người không rút tiền ra? A 14 năm B 12 năm C 10 năm D 11 năm Câu 100 Cho hình chóp S ABC Gọi M trung điểm S A Mặt phẳng BMC chia hình chóp S ABC thành A Một hình chóp tam giác hình chóp tứ giác B Hai hình chóp tứ giác C Một hình chóp tứ giác hình chóp ngũ giác D Hai hình chóp tam giác Câu 101 Tính lim A 2n2 − 3n6 + n4 B C D Câu 102 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp đơi thể tích khối hộp tương ứng sẽ: A Tăng gấp đôi B Tăng gấp lần C Tăng gấp lần D Tăng gấp lần Trang 8/10 Mã đề Câu 103 [4] Cho lăng trụ ABC.A0 B0C có chiều cao đáy tam giác cạnh Gọi M, N P tâm mặt bên ABB0 A0 , ACC A0 , BCC B0 Thể tích khối đa diện lồi có đỉnh A, B, C, M, √ √ N, P √ √ 20 14 B C A D 3 Câu 104 Cho hình chóp S ABCD có đáy ABCD hình vng biết S A ⊥ (ABCD), S C = a S C hợp với đáy một√góc 60◦ Thể tích khối √ chóp S ABCD √ √ a3 a3 a3 a3 B C D A 24 16 48 48 √ Câu 105 [1] Cho a > 0, a , Giá trị biểu thức alog a √ A D 25 B C x2 Câu 106 Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x đoạn [−1; 1] Khi e 1 C M = e, m = D M = , m = A M = e, m = B M = e, m = e e Câu 107 Cho hai đường thẳng phân biệt d d đồng phẳng Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có hai B Có hai C Khơng có D Có 2x + Câu 108 Tính giới hạn lim x→+∞ x + 1 A −1 B C D Câu 109 Nhị thập diện (20 mặt đều) thuộc loại A {3; 5} B {3; 4} C {4; 3} D {5; 3} Câu 110 Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm Câu 111 [3-1122h] Cho hình lăng trụ ABC.A0 B0C có đáy tam giác cạnh a Hình chiếu vng góc A0 lên √ mặt phẳng (ABC) trung với tâm tam giác ABC Biết khoảng cách đường thẳng AA a BC Khi thể tích khối lăng trụ √ √ √ √ a3 a3 a3 a3 B C D A 12 36 24 Câu 112 Nếu hình chóp có chiều cao cạnh đáy tăng lên n lần thể tích tăng lên? A 2n3 lần B 2n2 lần C n3 lần D n3 lần Câu 113 [2-c] Giá trị nhỏ hàm số y = x2 ln x đoạn [e−1 ; e] 1 A − B − C −e e e Câu 114 Hình hình sau khơng khối đa diện? A Hình tam giác B Hình lập phương C Hình lăng trụ π x Câu 115 [2-c] Giá trị lớn hàm số y = e cos x đoạn 0; √ √ π4 π6 π3 A e B e C e 2 D − 2e D Hình chóp D Trang 9/10 Mã đề Câu 116 Cho hàm số y = x3 + 3x2 Mệnh đề sau đúng? A Hàm số đồng biến khoảng (−∞; −2) (0; +∞) B Hàm số nghịch biến khoảng (−∞; −2) (0; +∞) C Hàm số nghịch biến khoảng (−2; 1) D Hàm số đồng biến khoảng (−∞; 0) (2; +∞) Câu 117 Khối đa diện loại {3; 3} có số đỉnh A B C Câu 118 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) xác định K B f (x) liên tục K D f (x) có giá trị lớn K D Câu 119 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A D √ Câu 120 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 a 38 3a 38 3a A B C D 29 29 29 29 Câu 121 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, tam giác S AB đều, H trung điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S ABCD √ a3 2a3 4a3 a3 A B C D 3 Câu 122 Cho hàm số f (x), Z Z g(x) liên tục Z R Trong Z mệnh đề sau, mệnh Z đề Z sai? ( f (x) + g(x))dx = A Z C B ( f (x) − g(x))dx = C f (x)dx + Z g(x)dx B Z f (x)dx − Z g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 123 [1] Đạo hàm làm số y = log x 1 ln 10 A y0 = B C y0 = D y0 = x 10 ln x x x ln 10 Câu 124 Gọi M, m giá trị lớn nhất, giá trị nhỏ hàm số y = (x2 − 3)e x đoạn [0; 2] Giá trị biểu thức P = (m2 − 4M)2019 A e2016 B C D 22016 Câu 125 [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn tháng, lãi suất 2% quý Sau tháng, người gửi thêm 100 triệu đồng với kỳ hạn lãi suất trước Tổng số tiền người nhận sau năm gửi tiền vào ngân hàng gần kết sau đây? Biết suốt thời gian gửi tiền lãi suất ngân hàng khơng thay đổi người không rút tiền A 212 triệu B 216 triệu C 220 triệu D 210 triệu Câu 126 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách √ hai đường thẳng BD và√S C √ √ a a a A B C D a 6 Trang 10/10 Mã đề Câu 127 Hàm số y = −x3 + 3x − đồng biến khoảng đây? A (−∞; 1) B (1; +∞) C (−∞; −1) d = 90◦ , ABC d = 30◦ ; S BC tam Câu 128 Cho hình chóp S ABC có BAC (ABC) Thể √là √ tích khối chóp S ABC 3 √ a a B C 2a2 A 24 24 log 2x Câu 129 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x A y0 = B y0 = C y0 = x x ln 10 2x ln 10 Câu 130 Hàm số y = x3 − 3x2 + đồng biến trên: A (0; 2) B (0; +∞) C (−∞; 2) D (−1; 1) giác cạnh a (S AB) ⊥ √ a3 D 12 D y0 = − ln 2x 2x3 ln 10 D (−∞; 0) (2; +∞) - - - - - - - - - - HẾT- - - - - - - - - - Trang 11/10 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A D A C A A 11 B 13 A D D 14 D 16 C 18 19 C 20 21 C 22 23 D 24 25 D 26 B C D C B D 33 A 34 C 36 35 A D 37 A 39 B 40 42 D 31 32 A 38 B 28 A C 30 C 12 17 27 B 10 C 15 C B 41 A C B 43 A 44 D 45 A 46 D 47 48 A 49 C B 50 C 51 C 52 C 53 C 54 A 56 55 A 57 B 59 58 A 60 C C D 61 B 62 D 63 B 64 D 65 B 66 67 C 68 A 69 C B 70 B 71 72 B 73 D 74 77 78 C 79 80 C 81 82 C 83 84 A C 88 D 90 A 92 D 96 98 102 B D B C 87 B 89 C 91 C C 97 D 99 D 101 C 103 C 105 106 C 107 A 108 C 109 A 110 C 111 A D D 113 114 A 115 A 116 A 117 B 120 A 121 C 123 124 B 125 A 126 B 127 128 B 129 B C B D D 119 122 130 B B C 118 C 85 104 112 B 95 D 100 D 93 A C 94 B 75 76 A 86 D D D B