1. Trang chủ
  2. » Tất cả

Đề ôn thi thử môn hóa (723)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

e6 240 Miller JR, Myers RE Neuropathology of systemic circulatory arrest in adult monkeys Neurology 1972;22(9) 888 904 241 Ment LR, et al Beagle pup model of perinatal asphyxia nimodip ine studies Str[.]

e6 240 Miller JR, Myers RE Neuropathology of systemic circulatory arrest in adult monkeys Neurology 1972;22(9):888-904 241 Ment LR, et al Beagle pup model of perinatal asphyxia: nimodipine studies Stroke 1987;18(3):599-605 242 Elmer J, et al Effect of neuromonitor-guided titrated care on brain tissue hypoxia after opioid overdose cardiac arrest Resuscitation 2018;129:121-126 243 Kirsch JR, et al Age-related cerebrovascular response to global ischemia in pigs Am J Physiol 1990;259(5 Pt 2):H1551-H1558 244 Roland EH, et al Selective brainstem injury in an asphyxiated newborn Ann Neurol 1988;23(1):89-92 245 van Lookeren Campagne M, et al Early evolution and recovery from excitotoxic injury in the neonatal rat brain: a study combining magnetic resonance imaging, electrical impedance, and histology J Cereb Blood Flow Metab 1994;14(6):1011-1023 246 Johnston MV Developmental aspects of NMDA receptor agonists and antagonists in the central nervous system Psychopharmacol Bull 1994;30(4):567-575 247 Ikonomidou C, et al Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain Science 1999;283(5398): 70-74 248 Zou X, et al Inhalation anesthetic-induced neuronal damage in the developing rhesus monkey Neurotoxicol Teratol 2011;33(5):592-597 249 Finger S, Almli CR Brain damage and neuroplasticity: mechanisms of recovery or development? Brain Res 1985;357(3):177-186 250 Hicks SP, D’Amato CJ Motor-sensory and visual behavior after hemispherectomy in newborn and mature rats Exp Neurol 1970;29(3):416-438 251 Hoffman WE, et al Brain lactate and neurologic outcome following incomplete ischemia in fasted, nonfasted, and glucose-loaded rats Anesthesiology 1990;72(6):1045-1050 252 Kalimo H, et al Brain lactic acidosis and ischemic cell damage: Histopathology J Cereb Blood Flow Metab 1981;1(3):313-327 253 Rehncrona S, Rosen I, Siesjo BK Brain lactic acidosis and ischemic cell damage: Biochemistry and neurophysiology J Cereb Blood Flow Metab 1981;1(3):297-311 254 Simon R, Shiraishi K N-methyl-D-aspartate antagonist reduces stroke size and regional glucose metabolism Ann Neurol 1990;27(6):606-611 255 Kraig RP, et al Hydrogen ions kill brain at concentrations reached in ischemia J Cereb Blood Flow Metab 1987;7(4):379-386 256 Gelberg J, et al Improving survival and neurologic function for younger age groups after out-of-hospital cardiac arrest in Sweden: a 20-year comparison Pediatr Crit Care Med 2015;16(8):750-757 257 Kragholm K, et al Bystander efforts and 1-year outcomes in outof-hospital cardiac arrest N Engl J Med 2017;376(18):1737-1747 258 Wissenberg M, et al Association of national initiatives to improve cardiac arrest management with rates of bystander intervention and patient survival after out-of-hospital cardiac arrest JAMA 2013;310(13):1377-1384 259 Sutton RM, et al A quantitative analysis of out-of-hospital pediatric and adolescent resuscitation quality—A report from the ROC epistry-cardiac arrest Resuscitation 2015;93:150-157 260 Martin LJ, et al Primary sensory and forebrain motor systems in the newborn brain are preferentially damaged by hypoxia-ischemia J Comp Neurol 1997;377(2):262-285 261 Fukuda T, et al Conventional versus compression-only versus nobystander cardiopulmonary resuscitation for pediatric out-of-hospital cardiac arrest Circulation 2016;134(25):2060-2070 262 Atkins DL, et al 2017 American Heart Association focused update on pediatric basic life support and cardiopulmonary resuscitation quality: an update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Circulation 2018;137(1):e1-e6 263 Marino BS, et al Cardiopulmonary resuscitation in infants and children with cardiac disease: a scientific statement from the American Heart Association Circulation 2018;137(22):e691-e782 264 Goto Y, Maeda T, Goto Y Impact of dispatcher-assisted bystander cardiopulmonary resuscitation on neurological outcomes in children with out-of-hospital cardiac arrests: a prospective, nationwide, population-based cohort study J Am Heart Assoc 2014;3(3):e000499 265 Biarent D, et al Post-cardiac arrest syndrome in children Curr Pediatr Rev 2013;9(2):125-133 266 Hazelton JL, et al Hyperoxic reperfusion after global cerebral ischemia promotes inflammation and long-term hippocampal neuronal death J Neurotrauma 2010;27(4):753-762 267 Danilov CA, Fiskum G Hyperoxia promotes astrocyte cell death after oxygen and glucose deprivation Glia 2008;56(7):801-808 268 Davis PG, et al Resuscitation of newborn infants with 100% oxygen or air: a systematic review and meta-analysis Lancet 2004;364(9442): 1329-1333 269 Rabi Y, Rabi D, Yee W Room air resuscitation of the depressed newborn: a systematic review and meta-analysis Resuscitation 2007;72(3):353-363 270 Kattwinkel J, et al Part 15: neonatal resuscitation: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Circulation 2010;122(18 suppl 3):S909-S919 271 Kilgannon JH, et al Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality JAMA 2010;303(21):2165-2171 272 Ramgopal S, et al Association of severe hyperoxemia events and mortality among patients admitted to a pediatric intensive care unit JAMA Netw Open 2019;2(8):e199812 273 Roberts BW, et al Association between early hyperoxia exposure after resuscitation from cardiac arrest and neurological disability: prospective multicenter protocol-directed cohort study Circulation 2018;137(20):2114-2124 274 Elmer J, et al The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database Intensive Care Med 2015;41(1):49-57 275 Ferguson LP, Durward A, Tibby SM Relationship between arterial partial oxygen pressure after resuscitation from cardiac arrest and mortality in children Circulation 2012;126(3):335-342 276 Guerra-Wallace MM, et al Hyperoxia and hypoxia in children resuscitated from cardiac arrest Pediatr Crit Care Med 2013;14(3): e143-e148 277 Bennett KS, et al Early oxygenation and ventilation measurements after pediatric cardiac arrest: lack of association with outcome Crit Care Med 2013;41(6):1534-1542 278 Del Castillo J, et al Hyperoxia, hypocapnia and hypercapnia as outcome factors after cardiac arrest in children Resuscitation 2012; 83(12):1456-1461 279 Schneider AG, et al Arterial carbon dioxide tension and outcome in patients admitted to the intensive care unit after cardiac arrest Resuscitation 2013;84(7):927-934 280 Kleinman ME, et al Part 14: pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Circulation 2010;122(18 suppl 3):S876-S908 281 Berg RA, et al End-tidal carbon dioxide during pediatric in-hospital cardiopulmonary resuscitation Resuscitation 2018;133:173-179 282 Safar P, Bircher N, Klain M Future directions for resuscitation research: introduction Resuscitation 1996;32(1):45-50 283 Berg RA, et al Association between diastolic blood pressure during pediatric in-hospital cardiopulmonary resuscitation and survival Circulation 2018;137(17):1784-1795 284 Topjian AA, et al Early postresuscitation hypotension is associated with increased mortality following pediatric cardiac arrest Crit Care Med 2014;42(6):1518-1523 285 Bleyaert AL, et al Augmentation of postischemic brain damage by severe intermittent hypertension Crit Care Med 1980;8(1):41-47 286 Safar P, et al Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion Stroke 1996;27(1):105-113 287 Topjian AA, et al Association of early postresuscitation hypotension with survival to discharge after targeted temperature management for e7 pediatric out-of-hospital cardiac arrest: secondary analysis of a randomized clinical trial JAMA Pediatr 2018;72(2):143-153 288 Topjian AA, et al The association of immediate post cardiac arrest diastolic hypertension and survival following pediatric cardiac arrest Resuscitation 2019;141:88-95 289 Faro J, et al Differential association of subtypes of epileptiform activity with outcome after cardiac arrest Resuscitation 2019;136: 138-145 290 Dean JM, McComb JG Intracranial pressure monitoring in severe pediatric near-drowning Neurosurgery 1981;9(6):627-630 291 Nussbaum E, Galant SP Intracranial pressure monitoring as a guide to prognosis in the nearly drowned, severely comatose child J Pediatr 1983;102(2):215-218 292 Frewen TC, et al Cerebral resuscitation therapy in pediatric neardrowning J Pediatr 1985;106(4):615-617 293 Sarnaik AP, et al Intracranial pressure and cerebral perfusion pressure in near-drowning Crit Care Med 1985;13(4):224-227 294 Biggart MJ, Bohn DJ Effect of hypothermia and cardiac arrest on outcome of near-drowning accidents in children J Pediatr 1990;117(2 Pt 1):179-183 295 Miller CL, et al Local cerebral blood flow following transient cerebral ischemia I Onset of impaired reperfusion within the first hour following global ischemia Stroke 1980;11(5):534-541 296 Todd MM, Tommasino C, Shapiro HM Cerebrovascular effects of prolonged hypocarbia and hypercarbia after experimental global ischemia in cats Crit Care Med 1985;13(9):720-723 297 Cold GE Does acute hyperventilation provoke cerebral oligaemia in comatose patients after acute head injury? Acta Neurochir (Wien) 1989;96(3-4):100-106 298 Arai T, et al Effects of mannitol on cerebral circulation after transient complete cerebral ischemia in dogs Crit Care Med 1986;14(7):634-637 299 Muizelaar JP, et al Cerebral blood flow and metabolism in severely head-injured children Part 2: Autoregulation J Neurosurg 1989;71(1):72-76 300 Moolten SE Albumin therapy for brain swelling in cardiac arrest: a proposal Mt Sinai J Med 1979;46(3):277-287 301 Cole F Use of human serum albumin in cerebral edema following cardiac arrest; report of a case J Am Med Assoc 1951;147(16):1563-1564 302 Belayev L, et al Neuroprotective effect of high-dose albumin therapy against global ischemic brain injury in rats Brain Res 1999;845(1):107-111 303 Breil M, et al Hypertonic saline improves myocardial blood flow during CPR, but is not enhanced further by the addition of hydroxy ethyl starch Resuscitation 2003;56(3):307-317 304 Hahn C, et al Hypertonic saline infusion during resuscitation from out-of-hospital cardiac arrest: a matched-pair study from the German Resuscitation Registry Resuscitation 2014;85(5):628-636 305 Phelps C Principles of treatment In: Critchley FEM, Goodrich JT, Editor Traumatic Injuries of the Brain and Its Membranes New York: D Appleton and Company; 1897:223 306 Rosomoff HL, Holaday DA Cerebral blood flow and cerebral oxygen consumption during hypothermia Am J Physiol 1954;179(1):85-88 307 Yager JY, Asselin J Effect of mild hypothermia on cerebral energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat Stroke 1996;27(5):919-925; discussion 926 308 Jackson TC, et al Cold stress protein RBM3 responds to temperature change in an ultra-sensitive manner in young neurons Neuroscience 2015;305:268-278 309 Zhao H, Steinberg GK, Sapolsky RM General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage J Cereb Blood Flow Metab 2007;27(12):1879-1894 310 Busto R, et al Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury J Cereb Blood Flow Metab 1987;7(6):729-738 311 Hickey RW, et al Delayed, spontaneous hypothermia reduces neuronal damage after asphyxial cardiac arrest in rats Crit Care Med 2000;28(10):3511-3516 312 Fink EL, et al Brief induced hypothermia improves outcome after asphyxial cardiopulmonary arrest in juvenile rats Dev Neurosci 2005;27(2-4):191-199 313 Bohn DJ, et al Influence of hypothermia, barbiturate therapy, and intracranial pressure monitoring on morbidity and mortality after near-drowning Crit Care Med 1986;14(6):529-534 314 Zeiner A, et al Hyperthermia after cardiac arrest is associated with an unfavorable neurologic outcome Arch Intern Med 2001;161(16):2007-2012 315 Bembea MM, et al Temperature patterns in the early postresuscitation period after pediatric inhospital cardiac arrest Pediatr Crit Care Med 2010;11(6):723-730 316 Lascarrou JB, et al Targeted temperature management for cardiac arrest with nonshockable rhythm N Engl J Med 2019;381(24): 2327-2337 317 Dankiewicz J, et al Targeted hypothermia versus targeted Normothermia after out-of-hospital cardiac arrest (TTM2): A randomized clinical trial-Rationale and design Am Heart J 2019;217:23-31 318 Laptook A, et al Elevated temperature after hypoxic-ischemic encephalopathy: risk factor for adverse outcomes Pediatrics 2008;122(3):491-499 319 Azzopardi DV, et al Moderate hypothermia to treat perinatal asphyxial encephalopathy N Engl J Med 2009;361(14):1349-1358 320 Jackson TC, Kotermanski SE, Kochanek PM Infants uniquely express high levels of RBM3 and other cold-adaptive neuroprotectant proteins in the human brain Dev Neurosci 2018;40(4):325-336 321 Felderhoff-Mueser U, et al Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain Ann Neurol 2005;57(1):50-59 322 Haque IU, Latour MC, Zaritsky AL Pediatric critical care community survey of knowledge and attitudes toward therapeutic hypothermia in comatose children after cardiac arrest Pediatr Crit Care Med 2006;7(1):7-14 323 Doherty DR, et al Hypothermia therapy after pediatric cardiac arrest Circulation 2009;119(11):1492-500 324 Kim F, et al Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial JAMA 2014;311(1):45-52 325 Scolletta S, et al Intra-arrest hypothermia during cardiac arrest: a systematic review Crit Care 2012;16(2):R41 326 Debaty G, et al Impact of intra-arrest therapeutic hypothermia in outcomes of prehospital cardiac arrest: a randomized controlled trial Intensive Care Med 2014;40(12):1832-1842 327 Nordberg P, et al Effect of trans-nasal evaporative intra-arrest cooling on functional neurologic outcome in out-of-hospital cardiac arrest: The PRINCESS randomized clinical trial JAMA 2019;321(17):1677-1685 328 Callaway CW, et al Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care Circulation 2015;132(18 suppl 2):S465-S482 329 Atkins DL, et al Part 11: pediatric basic life support and cardiopulmonary resuscitation quality: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care Circulation 2015;132(18 suppl 2):S519S525 330 Knight LJ, et al Improving code team performance and survival outcomes: implementation of pediatric resuscitation team training Crit Care Med 2014;42(2):243-251 331 Sutton RM, et al Low-dose, high-frequency CPR training improves skill retention of in-hospital pediatric providers Pediatrics 2011;128(1):e145-e151 332 Lin Y, et al Improving CPR quality with distributed practice and real-time feedback in pediatric healthcare providers - A randomized controlled trial Resuscitation 2018;130:6-12 333 Anderson R, et al Optimal training frequency for acquisition and retention of high-quality CPR skills: a randomized trial Resuscitation 2019;135:153-161 e8 334 Hunt EA, et al Delays and errors in cardiopulmonary resuscitation and defibrillation by pediatric residents during simulated cardiopulmonary arrests Resuscitation 2009;80(7):819-825 335 Deakin CD, Evans S, King P Evaluation of telephone-cardiopulmonary resuscitation advice for paediatric cardiac arrest Resuscitation 2010;81:853-856 336 Donoghue A, et al Cardiopulmonary resuscitation for bradycardia with poor perfusion versus pulseless cardiac arrest Pediatrics 2009;124(6):1541-1548 337 McInnes AD, et al Ability of code leaders to recall CPR quality errors during the resuscitation of older children and adolescents Resuscitation 2012;83(12):1462-1466 338 Sutton RM, et al Quantitative analysis of chest compression interruptions during in-hospital resuscitation of older children and adolescents Resuscitation 2009;80(11):1259-1263 339 O’Connell KJ, et al Pauses in compressions during pediatric CPR: Opportunities for improving CPR quality Resuscitation 2019;145:158-165 340 Cheng A, et al Optimizing CPR performance with CPR coaching for pediatric cardiac arrest: a randomized simulation-based clinical trial Resuscitation 2018;132:33-40 341 Ashton A, et al Effect of rescuer fatigue on performance of continuous external chest compressions over Resuscitation 2002;55(2):151-155 342 Ochoa FJ, et al The effect of rescuer fatigue on the quality of chest compressions Resuscitation 1998;37(3):149-152 343 Sutton RM, et al First quantitative analysis of cardiopulmonary resuscitation quality during in-hospital cardiac arrests of young children Resuscitation 2014;85(1):70-74 344 Maguire S, et al Does cardiopulmonary resuscitation cause rib fractures in children? A systematic review Child Abuse Negl 2006;30(7):739-751 345 Sutton RM, et al Pushing harder, pushing faster, minimizing interruptions but falling short of 2010 cardiopulmonary resuscitation targets during in-hospital pediatric and adolescent resuscitation Resuscitation 2013;84(12):1680-1684 346 Stiell IG, et al What is the optimal chest compression depth during out-of-hospital cardiac arrest resuscitation of adult patients? Circulation 2014;130(22):1962-1970 347 Srinivasan V, et al Childhood obesity and survival after in-hospital pediatric cardiopulmonary resuscitation Pediatrics 2010;125(3):e481-e488 348 Sutton RM, et al American Heart Association cardiopulmonary resuscitation quality targets are associated with improved arterial blood pressure during pediatric cardiac arrest Resuscitation 2013;84(2):168-172 349 Sutton RM, et al Quantitative analysis of CPR quality during inhospital resuscitation of older children and adolescents Pediatrics 2009;124(2):494-499 350 Niles D, et al Leaning is common during in-hospital pediatric CPR, and decreased with automated corrective feedback Resuscitation 2009;80(5):553-557 351 Aufderheide TP, et al Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques Resuscitation 2005;64(3):353-362 352 Yannopoulos D, et al Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest Resuscitation 2005;64(3):363-372 353 Zuercher M, et al Leaning during chest compressions impairs cardiac output and left ventricular myocardial blood flow in piglet cardiac arrest Crit Care Med 2010;38(4):1141-1146 354 Niebauer JM, et al Hyperventilation in pediatric resuscitation: performance in simulated pediatric medical emergencies Pediatrics 2011;128(5):e1195-e1200 355 Sutton RM, et al Ventilation rates and pediatric in-hospital cardiac arrest survival outcomes Crit Care Med 2019;47(11):1627-1636 356 Aufderheide TP, et al Hyperventilation-induced hypotension during cardiopulmonary resuscitation Circulation 2004;109(16): 1960-1965 357 Gazmuri RJ, et al Clinically plausible hyperventilation does not exert adverse hemodynamic effects during CPR but markedly reduces end-tidal PCO(2) Resuscitation 2012;83(2):259-264 358 Kida K, et al Beneficial effects of nitric oxide on outcomes after cardiac arrest and cardiopulmonary resuscitation in hypothermiatreated mice Anesthesiology 2014;120(4):880-889 359 Tsui SS, et al Nitric oxide production affects cerebral perfusion and metabolism after deep hypothermic circulatory arrest Ann Thorac Surg 1996;61(6):1699-1707 360 Hiramatsu T, et al Cerebral metabolic recovery from deep hypothermic circulatory arrest after treatment with arginine and nitro-arginine methyl ester J Thorac Cardiovasc Surg 1996;112(3):698-707 361 Lurie KG, et al Combination drug therapy with vasopressin, adrenaline (epinephrine) and nitroglycerin improves vital organ blood flow in a porcine model of ventricular fibrillation Resuscitation 2002;54(2):187-194 362 Kono S, et al Vasopressin with delayed combination of nitroglycerin increases survival rate in asphyxia rat model Resuscitation 2002;54(3):297-301 363 Varvarousi G, et al Epinephrine, vasopressin, and nitroglycerin improve neurologic outcome in porcine asphyxial cardiac arrest Am J Emerg Med 2012;30(8):1549-1554 364 Miyazaki Y, Ichinose F Nitric oxide in post-cardiac arrest syndrome J Cardiovasc Pharmacol 2020;75(6):508-515 365 Xu K, et al Adenosine improves cerebral recovery in rat after cardiac arrest and resuscitation Adv Exp Med Biol 1999;471:217-222 366 Xu K, et al Adenosine treatment delays postischemic hippocampal CA1 loss after cardiac arrest and resuscitation in rats Brain Res 2006;1071(1):208-217 367 Forsman M, et al Effects of nimodipine on cerebral blood flow and cerebrospinal fluid pressure after cardiac arrest: correlation with neurologic outcome Anesth Analg 1989;68(4):436-443 368 Steen PA, et al Nimodipine improves outcome when given after complete cerebral ischemia in primates Anesthesiology 1985;62(4):406-414 369 Guo XD, et al Effect of urokinase on cerebral perfusion after cardiopulmonary resuscitation in rabbits Eur Rev Med Pharmacol Sci 2014;18(8):1158-1162 370 Spinelli E, et al Thrombolytic-enhanced extracorporeal cardiopulmonary resuscitation after prolonged cardiac arrest Crit Care Med 2016;44(2):e58-e69 371 Kamohara T, et al A comparison of myocardial function after primary cardiac and primary asphyxial cardiac arrest Am J Respir Crit Care Med 2001;164(7):1221-1224 372 Wu CJ, et al Differences of postresuscitation myocardial dysfunction in ventricular fibrillation versus asphyxiation Am J Emerg Med 2013;31(12):1690-1696 373 Lah K, Krizmaric M, Grmec S The dynamic pattern of end-tidal carbon dioxide during cardiopulmonary resuscitation: difference between asphyxial cardiac arrest and ventricular fibrillation/pulseless ventricular tachycardia cardiac arrest Crit Care 2011;15(1):R13 374 Laitio R, et al Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-of-hospital cardiac arrest: a randomized clinical trial JAMA 2016;315(11):1120-1128 375 Tamura T, et al Efficacy of inhaled HYdrogen on neurological outcome following BRain Ischemia During post-cardiac arrest care (HYBRID II trial): study protocol for a randomized controlled trial Trials 2017;18(1):488 376 Cheng JP, et al A relatively brief exposure to environmental enrichment after experimental traumatic brain injury confers long-term cognitive benefits J Neurotrauma 2012;29(17):2684-2688 377 Giacino JT, et al Placebo-controlled trial of amantadine for severe traumatic brain injury N Engl J Med 2012;366(9):819-826 378 Bedell GM Functional outcomes of school-age children with acquired brain injuries at discharge from inpatient rehabilitation Brain Inj 2008;22(4):313-324 e9 379 Eilander HJ, et al Children and young adults in a prolonged unconscious state due to severe brain injury: outcome after an early intensive neurorehabilitation programme Brain Inj 2005;19(6): 425-436 380 Kilbaugh TJ, et al Persistently altered brain mitochondrial bioenergetics after apparently successful resuscitation from cardiac arrest J Am Heart Assoc 2015;4(9):e002232 381 Zanelli SA, et al Mechanisms of ischemic neuroprotection by acetyl-L-carnitine Ann N Y Acad Sci 2005;1053:153-161 382 Du L, et al Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD1 depletion and cell death induced by oxidative stress J Biol Chem 2003;278(20):18426-18433 383 Cour M, et al Ubiquitous protective effects of cyclosporine A in preventing cardiac arrest-induced multiple organ failure J Appl Physiol (1985) 2014;117(8):930-936 384 Knapp J, et al Evaluation of cyclosporine a as a cardio- and neuroprotective agent after cardiopulmonary resuscitation in a rat model Shock 2015;43(6):576-581 385 Bartos JA, et al Post-conditioning to improve cardiopulmonary resuscitation Curr Opin Crit Care 2014;20(3):242-249 386 Argaud L, et al Effect of cyclosporine in nonshockable out-ofhospital cardiac arrest: The CYRUS Randomized Clinical Trial JAMA Cardiol 2016;1(5):557-565 387 Ikeda K, et al Mitochondria-targeted hydrogen sulfide donor AP39 improves neurological outcomes after cardiac arrest in mice Nitric Oxide 2015;49:90-96 388 Chouchani ET, et al Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I Nat Med 2013;19(6):753-759 389 Kim M, et al Attenuation of oxidative damage by targeting mitochondrial complex I in neonatal hypoxic-ischemic brain injury Free Radic Biol Med 2018;124:517-524 390 Krainz T, et al Synthesis and evaluation of a mitochondria-targeting poly(ADP-ribose) Polymerase-1 Inhibitor ACS Chem Biol 2018;13(10):2868-2879 391 Jackson TC, Kochanek PM A new vision for therapeutic hypothermia in the era of targeted temperature management: a speculative synthesis Ther Hypothermia Temp Manag 2019;9(1):13-47 392 Cariou A, et al Early high-dose erythropoietin therapy after outof-hospital cardiac arrest: a multicenter, randomized controlled trial J Am Coll Cardiol 2016;68(1):40-49 393 Mizoguchi H, Levere RD Stimulation of alpha and beta polypeptide chain synthesis in cultured human marrow by erythropoietin Proc Soc Exp Biol Med 1972;141(1):322-326 394 Yu X, et al Erythropoietin receptor signalling is required for normal brain development Development 2002;129(2):505-516 395 Juul SE, et al Immunohistochemical localization of erythropoietin and its receptor in the developing human brain Pediatr Dev Pathol 1999;2(2):148-158 396 Shingo T, et al Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells J Neurosci 2001;21(24):9733-9743 397 Gunnarson E, et al Erythropoietin modulation of astrocyte water permeability as a component of neuroprotection Proc Natl Acad Sci U S A 2009;106(5):1602-1607 398 Papile LA, et al Hypothermia and neonatal encephalopathy Pediatrics 2014;133(6):1146-1150 399 Fan X, et al Hypothermia and erythropoietin for neuroprotection after neonatal brain damage Pediatr Res 2013;73(1):18-23 400 Traudt CM, et al Concurrent erythropoietin and hypothermia treatment improve outcomes in a term nonhuman primate model of perinatal asphyxia Dev Neurosci 2013;35(6):491-503 401 Elmahdy H, et al Human recombinant erythropoietin in asphyxia neonatorum: pilot trial Pediatrics 2010;125(5):e1135-e1142 402 Wu YW, et al Erythropoietin for neuroprotection in neonatal encephalopathy: safety and pharmacokinetics Pediatrics 2012;130(4):683-691 403 Zhu C, et al Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy Pediatrics 2009; 124(2):e218-e226 404 Ohls RK, et al Cognitive outcomes of preterm infants randomized to darbepoetin, erythropoietin, or placebo Pediatrics 2014;133(6): 1023-1030 405 Leuchter RH, et al Association between early administration of high-dose erythropoietin in preterm infants and brain MRI abnormality at term-equivalent age JAMA 2014;312(8):817-824 406 Juul SE, et al High-Dose Erythropoietin for Asphyxia and Encephalopathy (HEAL): a randomized controlled trial - background, aims, and study protocol Neonatology 2018;113(4):331-338 407 Chaudhary R, et al Erythropoietin therapy after out-of-hospital cardiac arrest: A systematic review and meta-analysis World J Cardiol 2017;9(12):830-837 408 Yu L, et al Neuronal nitric oxide synthase inhibition prevents cerebral palsy following hypoxia-ischemia in fetal rabbits: comparison between JI-8 and 7-nitroindazole Dev Neurosci 2011;33(3-4):312-319 409 Fleiss B, et al Stem cell therapy for neonatal brain injury Clin Perinatol 2014;41(1):133-148 410 Mueller D, et al Transplanted human embryonic germ cell-derived neural stem cells replace neurons and oligodendrocytes in the forebrain of neonatal mice with excitotoxic brain damage J Neurosci Res 2005;82(5):592-608 411 Meier C, et al Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells Pediatr Res 2006;59(2):244-249 412 Lu P, et al Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury Exp Neurol 2003;181(2):115-129 413 Kaplan JM, Youd ME, Lodie TA Immunomodulatory activity of mesenchymal stem cells Curr Stem Cell Res Ther 2011;6(4):297316 414 Comi AM, et al Neural stem cells reduce brain injury after unilateral carotid ligation Pediatr Neurol 2008;38(2):86-92 415 de Paula S, et al Hemispheric brain injury and behavioral deficits induced by severe neonatal hypoxia-ischemia in rats are not attenuated by intravenous administration of human umbilical cord blood cells Pediatr Res 2009;65(6):631-635 416 Cotten CM, et al Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy J Pediatr 2014;164(5):973-979.e1 417 Mancias-Guerra C, et al Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: an open-label phase I trial Cytotherapy 2014;16(6):810-820 418 Wang X, et al Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with cerebral palsy: a preliminary clinical study Cytotherapy 2013;15(12):15491562 419 Feng M, et al Safety of allogeneic umbilical cord blood stem cells therapy in patients with severe cerebral palsy: a retrospective study Stem Cells Int 2015;2015:325652 420 Min K, et al Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial Stem Cells 2013;31(3):581-591 421 Huang L, et al A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy Cell Transplant 2018;27(2):325-334 422 Sun JM, et al Effect of autologous cord blood infusion on motor function and brain connectivity in young children with cerebral palsy: a randomized, placebo-controlled trial Stem Cells Transl Med 2017;6(12):2071-2078 423 Safar P, et al Emergency cardiopulmonary bypass for resuscitation from prolonged cardiac arrest Am J Emerg Med 1990;8(1):55-67 424 Su L, et al Implementation of an extracorporeal cardiopulmonary resuscitation simulation program reduces extracorporeal cardiopulmonary resuscitation times in real patients Pediatr Crit Care Med 2014;15(9):856-860 425 Barbaro RP, et al Pediatric extracorporeal life support organization registry international report 2016 ASAIO J 2017;63(4):456-463 e10 426 Meert K, et al One-year cognitive and neurologic outcomes in survivors of paediatric extracorporeal cardiopulmonary resuscitation Resuscitation 2019;139:299-307 427 Meert KL, et al Extracorporeal cardiopulmonary resuscitation: one-year survival and neurobehavioral outcome among infants and children with in-hospital cardiac arrest Crit Care Med 2019;47(3):393-402 ... Local cerebral blood flow following transient cerebral ischemia I Onset of impaired reperfusion within the first hour following global ischemia Stroke 1980;11(5):534-541 296 Todd MM, Tommasino C,

Ngày đăng: 28/03/2023, 12:17

Xem thêm:

w