e1 References 1 Girotra S, et al Survival trends in pediatric in hospital cardiac ar rests an analysis from get with the guidelines resuscitation Circ Cardiovasc Qual Outcomes 2013;6(1) 42 49 2 Gluckm[.]
e1 References Girotra S, et al Survival trends in pediatric in-hospital cardiac arrests: an analysis from get with the guidelines-resuscitation Circ Cardiovasc Qual Outcomes 2013;6(1):42-49 Gluckman PD, et al Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial Lancet 2005;365(9460):663-670 Shankaran S, et al Whole-body hypothermia for neonates with hypoxicischemic encephalopathy N Engl J Med 2005;353(15):1574-1584 Cam BV, et al Randomized comparison of oxygen mask treatment vs nasal continuous positive airway pressure in dengue shock syndrome with acute respiratory failure J Trop Pediatr 2002;48(6): 335-339 Bernard SA, et al Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia N Engl J Med 2002;346(8):557-563 Hypothermia after Cardiac Arrest Study Group, Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest N Engl J Med 2002;346(8):549-556 Nielsen N, et al Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest N Engl J Med 2013; 369(23):2197-2206 Moler FW, et al Therapeutic hypothermia after out-of-hospital cardiac arrest in children N Engl J Med 2015;372(20):1898-1908 Shankaran S, et al Effect of depth and duration of cooling on deaths in the NICU among neonates with hypoxic ischemic encephalopathy: a randomized clinical trial JAMA 2014;312(24):2629-2639 10 Moler FW, et al Therapeutic hypothermia after in-hospital cardiac arrest in children N Engl J Med 2017;376(4):318-329 11 Lautz AJ, et al Hemodynamic-directed cardiopulmonary resuscitation improves neurologic outcomes and mitochondrial function in the heart and brain Crit Care Med 2019;47(3):e241-e249 12 Manole MD, et al Brain tissue oxygen monitoring identifies cortical hypoxia and thalamic hyperoxia after experimental cardiac arrest in rats Pediatr Res 2014;75(2):295-301 13 Kurtz P, et al Reduced brain/serum glucose ratios predict cerebral metabolic distress and mortality after severe brain injury Neurocrit Care 2013;19(3):311-319 14 Safar P Cerebral resuscitation after cardiac arrest: a review Circulation 1986;74(6 Pt 2):Iv138-Iv153 15 Young KD, et al A prospective, population-based study of the epidemiology and outcome of out-of-hospital pediatric cardiopulmonary arrest Pediatrics 2004;114(1):157-164 16 Donoghue AJ, et al Out-of-hospital pediatric cardiac arrest: an epidemiologic review and assessment of current knowledge Ann Emerg Med 2005;46(6):512-522 17 Tibballs J, Kinney S A prospective study of outcome of in-patient paediatric cardiopulmonary arrest Resuscitation 2006;71(3):310-318 18 Moler FW, et al In-hospital versus out-of-hospital pediatric cardiac arrest: a multicenter cohort study Crit Care Med 2009;37(7):22592267 19 Fink EL, et al A tertiary care center’s experience with therapeutic hypothermia after pediatric cardiac arrest Pediatr Crit Care Med 2010;11(1):66-74 20 O’Rourke PP Outcome of children who are apneic and pulseless in the emergency room Crit Care Med 1986;14(5):466-468 21 Young KD, Seidel JS Pediatric cardiopulmonary resuscitation: a collective review Ann Emerg Med 1999;33(2):195-205 22 Reis AG, et al A prospective investigation into the epidemiology of in-hospital pediatric cardiopulmonary resuscitation using the international Utstein reporting style Pediatrics 2002;109(2):200-209 23 Li D, et al Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest Proc Natl Acad Sci U S A 2015;112(16):E2073E2082 24 Nadkarni VM, et al First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults JAMA 2006;295(1):50-57 25 Atkins DL, et al Epidemiology and outcomes from out-of-hospital cardiac arrest in children: the Resuscitation Outcomes Consortium Epistry-Cardiac Arrest Circulation 2009;119(11):1484-1491 26 Goldberg MP, Monyer H, Choi DW Hypoxic neuronal injury in vitro depends on extracellular glutamine Neurosci Lett 1988;94(1-2): 52-57 27 Bodsch W, et al Recovery of monkey brain after prolonged ischemia II Protein synthesis and morphological alterations J Cereb Blood Flow Metab 1986;6(1):22-33 28 Vaagenes P, et al Asphyxiation versus ventricular fibrillation cardiac arrest in dogs Differences in cerebral resuscitation effects—a preliminary study Resuscitation 1997;35(1):41-52 29 Cady EB Magnetic resonance spectroscopy in neonatal hypoxicischaemic insults Childs Nerv Syst 2001;17(3):145-149 30 Siesjo BK, Wieloch T Cerebral metabolism in ischaemia: neurochemical basis for therapy Br J Anaesth 1985;57(1):47-62 31 Siesjo BK, et al Influence of acidosis on lipid peroxidation in brain tissues in vitro J Cereb Blood Flow Metab 1985;5(2):253-258 32 Hillered L, Smith ML, Siesjo BK Lactic acidosis and recovery of mitochondrial function following forebrain ischemia in the rat J Cereb Blood Flow Metab 1985;5(2):259-266 33 Liou AK, et al To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways Prog Neurobiol 2003;69(2):103-142 34 Choi DW Ischemia-induced neuronal apoptosis Curr Opin Neurobiol 1996;6(5):667-672 35 Portera-Cailliau C, Price DL, Martin LJ Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum J Comp Neurol 1997;378(1):88-104 36 Lorek A, et al Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy Pediatr Res 1994;36(6):99-706 37 Penrice J, et al Proton magnetic resonance spectroscopy of the brain during acute hypoxia-ischemia and delayed cerebral energy failure in the newborn piglet Pediatr Res 1997;41(6):795-802 38 Bralet J, Schreiber L, Bouvier C Effect of acidosis and anoxia on iron delocalization from brain homogenates Biochem Pharmacol 1992;43(5):979-983 39 du Plessis AJ, Volpe JJ Perinatal brain injury in the preterm and term newborn Curr Opin Neurol 2002;15(2):151-157 40 Siesjo BK, Bengtsson F Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis J Cereb Blood Flow Metab 1989;9(2):127-140 41 Katz LM, et al Electron spin resonance measure of brain antioxidant activity during ischemia/reperfusion Neuroreport 1998;9(7):1587-1593 42 Andreyev A, et al Calcium uptake and cytochrome c release from normal and ischemic brain mitochondria Neurochem Int 2018;117:15-22 43 Martin LJ, et al Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis Brain Res Bull 1998;46(4):281-309 44 Choi DW Ionic dependence of glutamate neurotoxicity J Neurosci 1987;7(2):369-379 45 Newell DW, Malouf AT, Franck JE Glutamate-mediated selective vulnerability to ischemia is present in organotypic cultures of hippocampus Neurosci Lett 1990;116(3):325-330 46 Kuroiwa T, et al Regional differences in the rate of energy impairment after threshold level ischemia for induction of cerebral infarction in gerbils Acta Neuropathol 2000;100(6):587-594 47 Sims NR, Pulsinelli WA Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat J Neurochem 1987;49(5):1367-1374 48 Sims NR Selective impairment of respiration in mitochondria isolated from brain subregions following transient forebrain ischemia in the rat J Neurochem 1991;56(6):1836-1844 e2 49 Zaidan E, Sims NR Selective reductions in the activity of the pyruvate dehydrogenase complex in mitochondria isolated from brain subregions following forebrain ischemia in rats J Cereb Blood Flow Metab 1993;13(1):98-104 50 Brierley JB, Meldrum BS, Brown AW The threshold and neuropathology of cerebral “anoxic-ischemic” cell change Arch Neurol 1973;29(6):367-374 51 Adamczak SE, et al Pyroptotic neuronal cell death mediated by the AIM2 inflammasome J Cereb Blood Flow Metab 2014;34(4): 621-629 52 Henke N, et al The plasma membrane channel ORAI1 mediates detrimental calcium influx caused by endogenous oxidative stress Cell Death Dis 2013;4:e470 53 Liu K, et al CHOP mediates ASPP2-induced autophagic apoptosis in hepatoma cells by releasing Beclin-1 from Bcl-2 and inducing nuclear translocation of Bcl-2 Cell Death Dis 2014;5:e1323 54 Au AK, et al Evaluation of autophagy using mouse models of brain injury Biochim Biophys Acta 2010;1802(10):918-923 55 Neumar RW, et al Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication Circulation 2008; 118(23):2452-2483 56 Bellamy R, et al Suspended animation for delayed resuscitation Crit Care Med 1996;24(suppl 2):S24-S47 57 Buja LM, Eigenbrodt ML, Eigenbrodt EH Apoptosis and necrosis Basic types and mechanisms of cell death Arch Pathol Lab Med 1993;117(12):1208-1214 58 Vanden Berghe T, et al Regulated necrosis: the expanding network of non-apoptotic cell death pathways Nat Rev Mol Cell Biol 2014;15(2):135-147 59 Degterev A, et al Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury Nat Chem Biol 2005;1(2):112-119 60 Kerr JF, Wyllie AH, Currie AR Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics Br J Cancer 1972;26(4):239-257 61 Cao G, et al Caspase-activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures J Neurosci 2001;21(13):4678-4690 62 Zhu C, et al Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain J Neurochem 2003;86(2):306-317 63 Cao G, et al Translocation of apoptosis-inducing factor in vulnerable neurons after transient cerebral ischemia and in neuronal cultures after oxygen-glucose deprivation J Cereb Blood Flow Metab 2003;23(10):1137-1150 64 Nitatori T, et al Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis J Neurosci 1995;15(2):1001-1011 65 Northington FJ, et al Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis J Neurosci 2001;21(6): 1931-1938 66 Shoykhet M, et al Thalamocortical dysfunction and thalamic injury after asphyxial cardiac arrest in developing rats J Neurosci 2012; 32(14):4972-4981 67 Li Y, et al Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat J Cereb Blood Flow Metab 1995;15(3):389-397 68 Renolleau S, et al Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender J Neurochem 2007; 100(4):1062-1071 69 Du L, et al Innate gender-based proclivity in response to cytotoxicity and programmed cell death pathway J Biol Chem 2004; 279(37):38563-38570 70 Topjian AA, et al Pediatric Post-Cardiac Arrest Care: A scientific statement from the American Heart Association Circulation 2019;140(6):e194-e233 71 Shintani T, Klionsky DJ Autophagy in health and disease: a doubleedged sword Science 2004;306(5698):990-995 72 Koike M, et al Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury Am J Pathol 2008;172(2):454-469 73 Puyal J, et al Postischemic treatment of neonatal cerebral ischemia should target autophagy Ann Neurol 2009;66(3):378-389 74 Du L, et al Starving neurons show sex difference in autophagy J Biol Chem 2009;284(4):2383-2396 75 Wen YD, et al Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways Autophagy 2008;4(6):762-769 76 Carloni S, Buonocore G, Balduini W Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury Neurobiol Dis 2008;32(3):329-339 77 Zhu C, et al The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia Cell Death Differ 2005;12(2):162-176 78 Au AK, et al Ischemia-induced autophagy contributes to neurodegeneration in cerebellar Purkinje cells in the developing rat brain and in primary cortical neurons in vitro Biochim Biophys Acta 2015;1852(9):1902-1911 79 MacManus JP, Buchan AM Apoptosis after experimental stroke: fact or fashion? J Neurotrauma 2000;17(10):899-914 80 Deshpande J, et al Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death Exp Brain Res 1992;88(1):91-105 81 Lemaire C, et al Inhibition of caspase activity induces a switch from apoptosis to necrosis FEBS Lett 1998;425(2):266-270 82 Maiuri MC, et al Self-eating and self-killing: crosstalk between autophagy and apoptosis Nat Rev Mol Cell Biol 2007;8(9):741-752 83 Portera-Cailliau C, Price DL, Martin LJ Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum J Comp Neurol 1997;378(1):70-87 84 Northington FJ, et al Failure to complete apoptosis following neonatal hypoxia-ischemia manifests as “continuum” phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain Neuroscience 2007;149(4):822-833 85 Ginet V, et al Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms Am J Pathol 2009;175(5):1962-1974 86 Northington FJ, et al Early Neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis Neurobiol Dis 2001;8(2):207-219 87 Kloner RA, Przyklenk K, Whittaker P Deleterious effects of oxygen radicals in ischemia/reperfusion Resolved and unresolved issues Circulation 1989;80(5):1115-1127 88 Siesjo BK, Agardh CD, Bengtsson F Free radicals and brain damage Cerebrovasc Brain Metab Rev 1989;1(3):165-211 89 Opie LH Reperfusion injury and its pharmacologic modification Circulation 1989;80(4):1049-1062 90 Trummer G, et al Successful resuscitation after prolonged periods of cardiac arrest: a new field in cardiac surgery J Thorac Cardiovasc Surg 2010;139(5):1325-1332, 1332.e1-2 91 Manole MD, et al Polynitroxyl albumin and albumin therapy after pediatric asphyxial cardiac arrest: effects on cerebral blood flow and neurologic outcome J Cereb Blood Flow Metab 2012;32(3):560-569 92 Drabek T, et al Global and regional differences in cerebral blood flow after asphyxial versus ventricular fibrillation cardiac arrest in rats using ASL-MRI Resuscitation 2014;85(7):964-971 93 Hallenbeck JM Prevention of postischemic impairment of microvascular perfusion Neurology 1977;27(1):3-10 94 Rothman S Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death J Neurosci 1984;4(7):18841891 95 Dugan LL, Choi DW Excitotoxicity, free radicals, and cell membrane changes Ann Neurol 1994;35(suppl):S17-21 96 Lipton SA, Rosenberg PA Excitatory amino acids as a final common pathway for neurologic disorders N Engl J Med 1994;330(9): 613-622 e3 97 Stys PK, Waxman SG, Ransom BR Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na1 channels and Na(1)-Ca21 exchanger J Neurosci 1992;12(2):430-439 98 Vest RS, et al Effective post-insult neuroprotection by a novel Ca(21)/ calmodulin-dependent protein kinase II (CaMKII) inhibitor J Biol Chem 2010;285(27):20675-20682 99 Zhang C, et al Comparison of calpain and caspase activities in the adult rat brain after transient forebrain ischemia Neurobiol Dis 2002;10(3):289-305 100 Bevers MB, Neumar RW Mechanistic role of calpains in postischemic neurodegeneration J Cereb Blood Flow Metab 2008;28(4):655-673 101 Bano D, et al Cleavage of the plasma membrane Na1/Ca21 exchanger in excitotoxicity Cell 2005;120(2):275-285 102 Gill R, et al Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain J Cereb Blood Flow Metab 2002;22(4):420-430 103 Shimohama S, Tanino H, Fujimoto S Differential expression of rat brain caspase family proteins during development and aging Biochem Biophys Res Commun 2001;289(5):1063-1066 104 Zhu C, et al Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia J Neurochem 2006;96(4):1016-1027 105 Basu S, et al Evidence for time-dependent maximum increase of free radical damage and eicosanoid formation in the brain as related to duration of cardiac arrest and cardio-pulmonary resuscitation Free Radic Res 2003;37(3):251-256 106 Kunimatsu T, et al Cerebral reactive oxygen species assessed by electron spin resonance spectroscopy in the initial stage of ischemia-reperfusion are not associated with hypothermic neuroprotection J Clin Neurosci 2011;18(4):545-548 107 Nelson CW, et al Oxygen radicals in cerebral ischemia Am J Physiol 1992;263(5 Pt 2):H1356-H1362 108 Ambrus A, Tretter L, Adam-Vizi V Inhibition of the alpha-ketoglutarate dehydrogenase-mediated reactive oxygen species generation by lipoic acid J Neurochem 2009;109(suppl 1):222-229 109 Dezfulian C, et al Mechanistic characterization of nitrite-mediated neuroprotection after experimental cardiac arrest J Neurochem 2016;139(3):419-431 110 Chouchani ET, et al Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS Nature 2014;515(7527):431-435 111 Bayir H, et al Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis Ann Neurol 2007;62(2):154-169 112 Ji J, et al Deciphering of mitochondrial cardiolipin oxidative signaling in cerebral ischemia-reperfusion J Cereb Blood Flow Metab 2015;35(2):319-328 113 Kahles T, Brandes RP Which NADPH oxidase isoform is relevant for ischemic stroke? The case for nox Antioxid Redox Signal 2013;18(12):1400-1417 114 Kontos HA Oxygen radicals from arachidonate metabolism in abnormal vascular responses Am Rev Respir Dis 1987;136(2):474-477 115 Abramov AY, Scorziello A, Duchen MR Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation J Neurosci 2007;27(5):1129-1138 116 Kovac S, et al Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation Cell Death Dis 2014;5:e1442 117 Betz AL, Randall J, Martz D Xanthine oxidase is not a major source of free radicals in focal cerebral ischemia Am J Physiol 1991;260(2 Pt 2):H563-H568 118 Lindsay S, et al Role of xanthine dehydrogenase and oxidase in focal cerebral ischemic injury to rat Am J Physiol 1991;261(6 Pt 2): H2051-H2057 119 Krause GS, et al Cardiac arrest and resuscitation: brain iron delocalization during reperfusion Ann Emerg Med 1985;14(11): 1037-1043 120 Komara JS, et al Brain iron delocalization and lipid peroxidation following cardiac arrest Ann Emerg Med 1986;15(4):384-389 121 Garthwaite J, et al NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices Eur J Pharmacol 1989;172(4-5):413-416 122 Beckman JS, et al Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide Proc Natl Acad Sci U S A 1990;87(4):1620-1624 123 Bayir H, et al Enhanced oxidative stress in iNOS-deficient mice after traumatic brain injury: support for a neuroprotective role of iNOS J Cereb Blood Flow Metab 2005;25(6):673-684 124 Dezfulian C, et al Nitrite therapy after cardiac arrest reduces reactive oxygen species generation, improves cardiac and neurological function, and enhances survival via reversible inhibition of mitochondrial complex I Circulation 2009;120(10):897-905 125 de Lima Portella R, Lynn Bickta J, and Shiva S Nitrite confers preconditioning and cytoprotection after ischemia/reperfusion injury through the modulation of mitochondrial function Antioxid Redox Signal 2015;23(4):307-327 126 Dezfulian C, et al Nitrite therapy is neuroprotective and safe in cardiac arrest survivors Nitric Oxide 2012;26(4):241-250 127 Lafon-Cazal M, et al NMDA-dependent superoxide production and neurotoxicity Nature 1993;364(6437):535-537 128 Gilman SC, Bonner MJ, Pellmar TC Free radicals enhance basal release of D-[3H]aspartate from cerebral cortical synaptosomes J Neurochem 1994;62(5):1757-1763 129 Krause GS, et al Assessment of free radical-induced damage in brain proteins after ischemia and reperfusion Resuscitation 1992;23(1):59-69 130 Bromont C, Marie C, Bralet J Increased lipid peroxidation in vulnerable brain regions after transient forebrain ischemia in rats Stroke 1989;20(7):918-924 131 Oliver CN, et al Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain Proc Natl Acad Sci U S A 1990;87(13):5144-5147 132 Martin E, Rosenthal RE, Fiskum G Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress J Neurosci Res 2005;79(1-2):240-247 133 Wang R, et al Genistein attenuates ischemic oxidative damage and behavioral deficits via eNOS/Nrf2/HO-1 signaling Hippocampus 2013;23(7):634-647 134 Sobocanec S, et al Sex-dependent antioxidant enzyme activities and lipid peroxidation in ageing mouse brain Free Radic Res 2003;37(7):743-748 135 Bazan NG Synaptic signaling by lipids in the life and death of neurons Mol Neurobiol 2005;31(1-3):219-230 136 Shiu GK, Nemmer JP, Nemoto EM Reassessment of brain free fatty acid liberation during global ischemia and its attenuation by barbiturate anesthesia J Neurochem 1983;40(3):880-884 137 Shaik JS, et al 20-Hydroxyeicosatetraenoic acid inhibition by HET0016 offers neuroprotection, decreases edema, and increases cortical cerebral blood flow in a pediatric asphyxial cardiac arrest model in rats J Cereb Blood Flow Metab 2015;35(11):1757-1763 138 Simon RP, et al The temporal profile of 72-kDa heat-shock protein expression following global ischemia J Neurosci 1991;11(3):881-889 139 Seidberg NA, et al Alterations in inducible 72-kDa heat shock protein and the chaperone cofactor BAG-1 in human brain after head injury J Neurochem 2003;84(3):514-521 140 Murphy SJ, et al Regional expression of heat shock protein 72 mRNA following mild and severe hypoxia in neonatal piglet brain Adv Exp Med Biol 1999;471:155-163 141 Chopp M, et al Transient hyperthermia protects against subsequent forebrain ischemic cell damage in the rat Neurology 1989;39(10):1396-1398 142 Ota A, et al Hypoxic-ischemic tolerance induced by hyperthermic pretreatment in newborn rats J Soc Gynecol Investig 2000;7(2): 102-105 e4 143 Lowenstein DH, Chan PH, Miles MF The stress protein response in cultured neurons: characterization and evidence for a protective role in excitotoxicity Neuron 1991;7(6):1053-1060 144 Hoehn B, et al Overexpression of HSP72 after induction of experimental stroke protects neurons from ischemic damage J Cereb Blood Flow Metab 2001;21(11):1303-1309 145 Kelly S, et al Gene transfer of HSP72 protects cornu ammonis region of the hippocampus neurons from global ischemia: influence of Bcl-2 Ann Neurol 2002;52(2):160-167 146 Matsumori Y, et al Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury J Cereb Blood Flow Metab 2005;25(7):899-910 147 Hockenbery DM, et al Bcl-2 functions in an antioxidant pathway to prevent apoptosis Cell 1993;75(2):241-251 148 Kane DJ, et al Expression of bcl-2 inhibits necrotic neural cell death J Neurosci Res 1995;40(2):269-275 149 Chen J, et al bcl-2 is expressed in neurons that survive focal ischemia in the rat Neuroreport 1995;6(2):394-398 150 Shimazaki K, Ishida A, Kawai N Increase in bcl-2 oncoprotein and the tolerance to ischemia-induced neuronal death in the gerbil hippocampus Neurosci Res 1994;20(1):95-99 151 Krajewski S, et al Upregulation of bax protein levels in neurons following cerebral ischemia J Neurosci 1995;15(10):6364-6376 152 Linnik MD, et al Expression of bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia Stroke 1995;26(9):1670-1674; discussion 1675 153 Chen Y, Ginis I, Hallenbeck JM The protective effect of ceramide in immature rat brain hypoxia-ischemia involves up-regulation of bcl-2 and reduction of TUNEL-positive cells J Cereb Blood Flow Metab 2001;21(1):34-40 154 Cao G, et al In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis J Neurosci 2002;22(13):5423-5431 155 Clark RS, et al Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury FASEB J 1999;13(8):813-821 156 Sasaki T, et al Bcl2 enhances survival of newborn neurons in the normal and ischemic hippocampus J Neurosci Res 2006;84(6): 1187-1196 157 Verrier JD, et al The brain in vivo expresses the 2’,3’-cAMP-adenosine pathway J Neurochem 2012;122(1):115-125 158 Phillis JW, et al Amino acid and purine release in rat brain following temporary middle cerebral artery occlusion Neurochem Res 1994;19(9):1125-1130 159 Morii S, et al Role of adenosine in regulation of cerebral blood flow: effects of theophylline during normoxia and hypoxia Am J Physiol 1987;253(1 Pt 2):H165-H175 160 Laudignon N, et al The role of adenosine in the vascular adaptation of neonatal cerebral blood flow during hypotension J Cereb Blood Flow Metab 1991;11(3):424-431 161 Ruth VJ, et al Adenosine and cerebrovascular hyperemia during insulin-induced hypoglycemia in newborn piglet Am J Physiol 1993;265(5 Pt 2):H1762-H1768 162 Miller LP, Hsu C Therapeutic potential for adenosine receptor activation in ischemic brain injury J Neurotrauma 1992;9(suppl 2):S563-S577 163 Rudolphi KA, et al Adenosine and brain ischemia Cerebrovasc Brain Metab Rev 1992;4(4):346-369 164 Snyder JV, et al Global ischemia in dogs: intracranial pressures, brain blood flow and metabolism Stroke 1975;6(1):21-27 165 Cerchiari EL, et al Protective effects of combined superoxide dismutase and deferoxamine on recovery of cerebral blood flow and function after cardiac arrest in dogs Stroke 1987;18(5):869-878 166 Rosenberg AA Cerebral blood flow and O2 metabolism after asphyxia in neonatal lambs Pediatr Res 1986;20(8):778-782 167 Mortberg E, et al A PET study of regional cerebral blood flow after experimental cardiopulmonary resuscitation Resuscitation 2007;75(1): 98-104 168 Michenfelder JD, Milde JH Postischemic canine cerebral blood flow appears to be determined by cerebral metabolic needs J Cereb Blood Flow Metab 1990;10(1):71-76 169 Wolfson Jr SK, et al Dynamic heterogeneity of cerebral hypoperfusion after prolonged cardiac arrest in dogs measured by the stable xenon/CT technique: a preliminary study Resuscitation 1992; 23(1):1-20 170 Manole MD, et al Magnetic resonance imaging assessment of regional cerebral blood flow after asphyxial cardiac arrest in immature rats J Cereb Blood Flow Metab 2009;29(1):197-205 171 Baker WB, et al Neurovascular coupling varies with level of global cerebral ischemia in a rat model J Cereb Blood Flow Metab 2013; 33(1):97-105 172 Cavus E, et al Brain tissue oxygen pressure and cerebral metabolism in an animal model of cardiac arrest and cardiopulmonary resuscitation Resuscitation 2006;71(1):97-106 173 Uray T, et al Phenotyping cardiac arrest: bench and bedside characterization of brain and heart injury based on etiology Crit Care Med 2018;46(6):e508-e515 174 Li L, et al Cerebral microcirculatory alterations and the no-reflow phenomenon in vivo after experimental pediatric cardiac arrest J Cereb Blood Flow Metab 2019;39(5):913-925 175 Beckstead JE, et al Cerebral blood flow and metabolism in man following cardiac arrest Stroke 1978;9(6):569-573 176 Cohan SL, et al Cerebral blood flow in humans following resuscitation from cardiac arrest Stroke 1989;20(6):761-765 177 Mujsce DJ, Christensen MA, Vannucci RC Cerebral blood flow and edema in perinatal hypoxic-ischemic brain damage Pediatr Res 1990;27(5):450-453 178 Ashwal S, et al Prognostic implications of hyperglycemia and reduced cerebral blood flow in childhood near-drowning Neurology 1990;40(5):820-823 179 Beyda DH The prognostic value of measuring regional cerebral blood flow in the neuro-compromised paediatric patient In: Wade J, ed Current problems in neurology: impact of functional imaging London: J Libbey; 1987 180 Lee JK, et al A pilot study of cerebrovascular reactivity autoregulation after pediatric cardiac arrest Resuscitation 2014;85(10):1387-1393 181 Pollock JM, et al Anoxic injury-associated cerebral hyperperfusion identified with arterial spin-labeled MR imaging AJNR Am J Neuroradiol 2008;29(7):1302-1307 182 Pienaar R, et al A quantitative method for correlating observations of decreased apparent diffusion coefficient with elevated cerebral blood perfusion in newborns presenting cerebral ischemic insults Neuroimage 2012;63(3):1510-1518 183 Sterz F, et al Multifocal cerebral blood flow by Xe-CT and global cerebral metabolism after prolonged cardiac arrest in dogs Reperfusion with open-chest CPR or cardiopulmonary bypass Resuscitation 1992;24(1):27-47 184 Nordmark J, Enblad P, Rubertsson S Cerebral energy failure following experimental cardiac arrest Hypothermia treatment reduces secondary lactate/pyruvate-ratio increase Resuscitation 2009;80(5):573-579 185 Nordmark J, et al Intracerebral monitoring in comatose patients treated with hypothermia after a cardiac arrest Acta Anaesthesiol Scand 2009;53(3):289-298 186 Ashwal S, et al 1H-magnetic resonance spectroscopy-determined cerebral lactate and poor neurological outcomes in children with central nervous system disease Ann Neurol 1997;41(4):470-481 187 Amess PN, et al Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at year in term infants after presumed hypoxic-ischaemic brain injury Dev Med Child Neurol 1999;41(7):436-445 188 Richards EM, et al Postischemic hyperoxia reduces hippocampal pyruvate dehydrogenase activity Free Radic Biol Med 2006;40(11):1960-1970 189 Nemoto EM, et al Global brain ischemia: a reproducible monkey model Stroke 1977;8(5):558-564 e5 190 Stockwell BR, et al Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease Cell 2017;171(2):273-285 191 Alim I, et al Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke Cell 2019;177(5):1262-1279.e25 192 Katz L, et al Outcome model of asphyxial cardiac arrest in rats J Cereb Blood Flow Metab 1995;15(6):1032-1039 193 Agnew DM, et al Hypothermia for 24 hours after asphyxic cardiac arrest in piglets provides striatal neuroprotection that is sustained 10 days after rewarming Pediatr Res 2003;54(2):253-262 194 Fink EL, et al Experimental model of pediatric asphyxial cardiopulmonary arrest in rats Pediatr Crit Care Med 2004;5(2):139-144 195 Ng T, et al Changes in the hippocampus and the cerebellum resulting from hypoxic insults: frequency and distribution Acta Neuropathol 1989;78(4):438-443 196 Kinney HC, et al Neuropathological findings in the brain of Karen Ann Quinlan The role of the thalamus in the persistent vegetative state N Engl J Med 1994;330(21):1469-1475 197 Hogler S, et al Distribution of neuropathological lesions in pig brains after different durations of cardiac arrest Resuscitation 2010;81(11):1577-1583 198 Stamenova V, et al Long-term effects of brief hypoxia due to cardiac arrest: Hippocampal reductions and memory deficits Resuscitation 2018;126:65-71 199 Orbo MC, et al Memory performance, global cerebral volumes and hippocampal subfield volumes in long-term survivors of Outof-Hospital Cardiac Arrest Resuscitation 2018;126:21-28 200 Fujioka M, et al Hippocampal damage in the human brain after cardiac arrest Cerebrovasc Dis 2000;10(1):2-7 201 Hirsch KG, et al Prognostic value of a qualitative brain MRI scoring system after cardiac arrest J Neuroimaging 2015;25(3):430-437 202 Robertson CM, et al Neurodevelopmental outcome of young pediatric intensive care survivors of serious brain injury Pediatr Crit Care Med 2002;3(4):345-350 203 Langhelle A, et al Recommended guidelines for reviewing, reporting, and conducting research on post-resuscitation care: the Utstein style Resuscitation 2005;66(3):271-283 204 Fiser DH Assessing the outcome of pediatric intensive care J Pediatr 1992;121(1):68-74 205 Silverstein FS, et al Functional outcome trajectories after out-ofhospital pediatric cardiac arrest Crit Care Med 2016;44(12):e1165e1174 206 Agarwal S, et al Determinants of long-term neurological recovery patterns relative to hospital discharge among cardiac arrest survivors Crit Care Med 2018;46(2):e141-e150 207 Griffith B, Kochanek P, Dezfulian C The benefits of youth are lost on the young cardiac arrest patient F1000Res 2017;6:77 208 Vander Schaaf PJ, et al Late improvements in mobility after acquired brain injuries in children Pediatr Neurol 1997;16(4):306-310 209 Slomine BS, et al Neuropsychological outcomes of children year after pediatric cardiac arrest: secondary analysis of randomized clinical trials JAMA Neurol 2018;75(12):1502-1510 210 Meert KL, et al Family burden after out-of-hospital cardiac arrest in children Pediatr Crit Care Med 2016;17(6):498-507 211 Akahane M, et al Characteristics and outcomes of pediatric out-ofhospital cardiac arrest by scholastic age category Pediatr Crit Care Med 2013;14(2):130-136 212 Lewis JK, et al Outcome of pediatric resuscitation Ann Emerg Med 1983;12(5):297-299 213 Torphy DE, Minter MG, Thompson BM Cardiorespiratory arrest and resuscitation of children Am J Dis Child 1984;138(12): 1099-1102 214 Zaritsky A Cardiopulmonary resuscitation in children Clin Chest Med 1987;8(4):561-571 215 Abend NS, Licht DJ Predicting outcome in children with hypoxic ischemic encephalopathy Pediatr Crit Care Med 2008;9(1):32-39 216 Abend NS, et al Outcome prediction by motor and pupillary responses in children treated with therapeutic hypothermia after cardiac arrest Pediatr Crit Care Med 2012;13(1):32-38 217 Topjian AA, et al Early electroencephalographic background features predict outcomes in children resuscitated from cardiac arrest Pediatr Crit Care Med 2016;17(6):547-557 218 Scollo-Lavizzari G, Bassetti C Prognostic value of EEG in postanoxic coma after cardiac arrest Eur Neurol 1987;26(3):161-170 219 Nishisaki A, et al Retrospective analysis of the prognostic value of electroencephalography patterns obtained in pediatric in-hospital cardiac arrest survivors during three years Pediatr Crit Care Med 2007;8(1):10-17 220 Abend NS, et al Electroencephalographic monitoring during hypothermia after pediatric cardiac arrest Neurology 2009;72(22): 1931-1940 221 Wennervirta JE, et al Hypothermia-treated cardiac arrest patients with good neurological outcome differ early in quantitative variables of EEG suppression and epileptiform activity Crit Care Med 2009;37(8):2427-2435 222 Kessler SK, et al Short-term outcome prediction by electroencephalographic features in children treated with therapeutic hypothermia after cardiac arrest Neurocrit Care 2011;14(1):37-43 223 Berger RP, et al Serum biomarkers after traumatic and hypoxemic brain injuries: insight into the biochemical response of the pediatric brain to inflicted brain injury Dev Neurosci 2006;28(4-5):327-335 224 Topjian AA, et al Neuron-specific enolase and S-100B are associated with neurologic outcome after pediatric cardiac arrest Pediatr Crit Care Med 2009;10(4):479-490 225 Fink EL, et al Serum biomarkers of brain injury to classify outcome after pediatric cardiac arrest Crit Care Med 2014;42(3):664-674 226 Fink EL, et al Exploratory study of serum ubiquitin carboxyl-terminal esterase L1 and glial fibrillary acidic protein for outcome prognostication after pediatric cardiac arrest Resuscitation 2016;101:65-70 227 Tiainen M, et al Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia Stroke 2003;34(12):2881-2886 228 Fink EL, et al 24 vs 72 hours of hypothermia for pediatric cardiac arrest: a pilot, randomized controlled trial Resuscitation 2018;126:14-20 229 Mandel R, et al Prediction of outcome after hypoxic-ischemic encephalopathy: a prospective clinical and electrophysiologic study J Pediatr 2002;141(1):45-50 230 Fisher B, Peterson B, Hicks G Use of brainstem auditory-evoked response testing to assess neurologic outcome following near drowning in children Crit Care Med 1992;20(5):578-585 231 Tiainen M, et al Somatosensory and brainstem auditory evoked potentials in cardiac arrest patients treated with hypothermia Crit Care Med 2005;33(8):1736-1740 232 Starling RM, et al Early head CT findings are associated with outcomes after pediatric out-of-hospital cardiac arrest Pediatr Crit Care Med 2015;16(6):542-548 233 Rafaat KT, et al Cranial computed tomographic findings in a large group of children with drowning: diagnostic, prognostic, and forensic implications Pediatr Crit Care Med 2008;9(6):567-572 234 Christophe C, et al Value of MR imaging of the brain in children with hypoxic coma AJNR Am J Neuroradiol 2002;23(4):716-723 235 Fink EL, et al Regional brain injury on conventional and diffusion weighted MRI is associated with outcome after pediatric cardiac arrest Neurocrit Care 2013;19(1):31-40 236 Manchester LC, et al Global and regional derangements of cerebral blood flow and diffusion magnetic resonance imaging after pediatric cardiac arrest J Pediatr 2016;169:28-35.e1 237 Kreis R, et al Hypoxic encephalopathy after near-drowning studied by quantitative 1H-magnetic resonance spectroscopy J Clin Invest 1996;97(5):1142-1154 238 Dubowitz DJ, et al MR of hypoxic encephalopathy in children after near drowning: correlation with quantitative proton MR spectroscopy and clinical outcome AJNR Am J Neuroradiol 1998;19(9):1617-1627 239 Mewasingh LD, et al Predictive value of electrophysiology in children with hypoxic coma Pediatr Neurol 2003;28(3):178-183 ... mitochondria-independent ROS production via NADPH and xanthine oxidase activation Cell Death Dis 2014;5:e1442 117 Betz AL, Randall J, Martz D Xanthine oxidase is not a major source of free radicals... immature brain is an apoptosis-necrosis morphological continuum J Comp Neurol 1997;378(1):70-87 84 Northington FJ, et al Failure to complete apoptosis following neonatal hypoxia-ischemia manifests as... its region-specific relationship to apoptotic mechanisms Am J Pathol 2009;175(5):1962-1974 86 Northington FJ, et al Early Neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while